Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x}=3\Rightarrow x=9\)
\(\sqrt{x}=\sqrt{5}\Rightarrow x=5\)
\(\sqrt{x}=0\Rightarrow x=0\)
\(\sqrt{x}=-2\Rightarrow x=\varnothing\)
a)\(\sqrt{x}=3\Rightarrow x=9\)
b)\(\sqrt{x}=\sqrt{5}\Rightarrow x=5\)
c)\(\sqrt{x}=0\Rightarrow x=0\)
d)\(\sqrt{x}=-2\Rightarrow x=4\)
\(\sqrt{9}=3\)
\(\sqrt{25=3}\)
\(\sqrt{0}=0\)
\(-\sqrt{4}\)
a, \(\sqrt{x}\)=3 ( đkxđ : \(x\ge0\))
<=> \(\left(\sqrt{x}\right)^{^{ }2}\)= \(^{3^2}\)
<=> x = 9
b, \(\sqrt{x}\)= \(\sqrt{5}\) ( đkxđ : \(x\ge0\))
<=> \(\left(\sqrt{x}\right)^2=\left(\sqrt{5}\right)^2\)
<=> x = 5
c, \(\sqrt{x}=0\) ( đkxđ : \(x\ge0\))
<=> \(\left(\sqrt{x}\right)^2=0^2\)
<=> x = 0
d, \(\sqrt{x}=-2\) ( đkxđ : \(x\ge0\))
vô nghiệm
Vậy k có giá trị nào của x ( tm đkxđ)
a) \(\sqrt{x}>1\Leftrightarrow x>1\)
b) \(\sqrt{x}< 3\Leftrightarrow x< 9\)
Vì x không âm nên x={0;1;2;3;4;5;6;7;8}
a)\(\sqrt{x}>1\Leftrightarrow\sqrt{x^2}>1^2\Leftrightarrow x>1\)
b)\(\sqrt{x}< 3\Leftrightarrow\sqrt{x^2}< 3^2\Leftrightarrow x< 9\)
bạn sử dụng bất đẳng thức : 3 ( a\(^2\)+ b\(^2\)+ c\(^2\)) \(\le\)( a + b + c )\(^2\)
rồi thay : a = x + y ; b = y + z ; c = z + x là được
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{x+z}\right)^2\)
\(\le\left(1+1+1\right)\cdot2\cdot\left(x+y+z\right)\)
\(=3\cdot2\cdot1=6=VP^2\)
Xảy ra khi \(x=y=z=\frac{1}{3}\)
\(\left(a-b\right)^3=a^3-b^3-3ab\left(a-b\right)\)
\(\Rightarrow x^3=5\sqrt{6}+5-5\sqrt{6}+5-3\sqrt[3]{25\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}x\)
\(\Rightarrow x^3=10-3.5x\)
\(\Rightarrow x^3+15x=10\)
a/\(\sqrt{x}=7\)
\(\Leftrightarrow x=49\)
b/\(\Leftrightarrow x< 4\)(do x>0)
\(\Rightarrow x\varepsilon\left\{0;1;2;3\right\}\)
c/\(2x< 16\)
\(\Leftrightarrow x< 8\)
\(\Leftrightarrow x\varepsilon\left\{1;2;3;4;5;6;7\right\}\)
a) \(2\sqrt{x}=14\Leftrightarrow\sqrt{x}=7\)
\(\Leftrightarrow x=7^2\Leftrightarrow x=49\)
b) \(\sqrt{x}< \sqrt{2}\Leftrightarrow x< 2\)
c) \(\sqrt{2x}< 4\)
Vì \(4=\sqrt{16}\text{ nên }\sqrt{2x}< 4\text{ có nghĩa là }\sqrt{2x}< 16\)
\(\Leftrightarrow2x< 16\)
\(\Leftrightarrow x< 8\left(x\ge0\right)\)
Với câu c, Thiên Anh nên thêm điều kiện để phần kết luận là: \(0\le x< 2.\)
x=4