Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ a/(x -2)\(^2\) =5
\(\Leftrightarrow x-2=\sqrt{5}\)
\(\Leftrightarrow x=\sqrt{5}+2\)
b/\(\sqrt{\left(x-2\right)^2=5}\)
\(\Leftrightarrow\left|x-2\right|=5\)
Ta có: \(\left|x-2\right|=x-2\) khi x - 2 \(\ge0\) \(\Leftrightarrow x\) \(\ge2\)
\(\left|x-2\right|=2-x\) khi \(x-2\) <0 \(\Leftrightarrow x\) <2
Nếu x \(\ge2\) phương trình có dạng :
\(x-2=5\)
x = 7 (thoả mãn điều kiện x \(\ge2\) )
Nếu x < 2 phương trình có dạng :
2 - x =5
\(\Leftrightarrow-x=3\)
\(\Leftrightarrow x=-3\) (thoả mãn điều kiện x <2 )
Vậy x =7 hoặc x = -3
c/\(\sqrt{\left(x-2\right)^2}=x-2\)
\(\Leftrightarrow\left|x-2\right|=x-2\)
Ta có : \(\left|x-2\right|=x-2\) khi x - 2 \(\ge0\Leftrightarrow x\ge2\)
\(\left|x-2\right|=2-xkhix-2< 0\Leftrightarrow x< 2\)
Nếu x \(\ge2\) phương trình có dạng :
x - 2 = x - 2
\(\Leftrightarrow x-x=2-2\)
\(\Leftrightarrow0=0\) (luôn đúng) \(\Leftrightarrow x\in R\)
Nếu x < 2 phương trình có dạng :
2 - x = x - 2
\(\Leftrightarrow-x-x=-2-2\)
\(\Leftrightarrow-2x=-4\)
\(\Leftrightarrow x=2\) (không thoả mãn điều kiện x < 2)
Vậy x \(\in R\)
d/ \(\sqrt{\left(x-2\right)^2}=2-x\)
\(\Leftrightarrow\left|x-2\right|=2-x\)
Ta có :\(\left|x-2\right|=x-2\) khi \(x-2\ge0\Leftrightarrow x\ge2\)
\(\left|x-2\right|=2-x\) khi x - 2 < 0 \(\Leftrightarrow x< 2\)
Nếu x \(\ge2\) phương trình có dạng :
x - 2 = 2 - x
\(\Leftrightarrow x+x=2+2\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\) (thoả mãn điều kiện x\(\ge2\))
Nếu x <2 phương trình có dạng :
2 - x = 2 - x
\(\Leftrightarrow x-x=2-2\)
\(\Leftrightarrow0=0\) (luôn đúng )
\(\Leftrightarrow x\in R\)
Vậy x\(\in R\)
Bài 2 mình chưa nghĩ ra xin lỗi bạn nhé!
\(x^2>16\Leftrightarrow x^2>4^2\Leftrightarrow\orbr{\begin{cases}x>4\\x< -4\end{cases}}\)
Vậy \(x>4\)hoặc \(x< -4\)
\(x^2< 25\Leftrightarrow x^2< 5^2\Leftrightarrow\orbr{\begin{cases}x< 5\\x>-5\end{cases}}\)
Vậy \(x< 5\) hoặc \(x>-5\)
\(x^2< \frac{1}{3}\Leftrightarrow x^2< \left(\sqrt{\frac{1}{3}}\right)^2\Leftrightarrow\orbr{\begin{cases}x< \sqrt{\frac{1}{3}}\\x>-\sqrt{\frac{1}{3}}\end{cases}}\)
Vậy \(x< \sqrt{\frac{1}{3}}\)hoặc \(x>-\sqrt{\frac{1}{3}}\)
Tham khảo nhé~
a)ĐKXĐ : x≠-3;2
b)A=x+1/x+3 - 10/(x^2+3x)-(2x+6) + 5/x-2
A=x+1/x+3 -10/x ×( x+3)-2 × (x+3) + 5/x-2
A= x+1/x+3 - 10/(x-2)(x+3). + .5/x-2
A= (x+1)(x-2) /(x-2)(x+3). - 10/(x-2)(x+3) + 5(x+3)/(x-2)(x+3)
A= x^2-2x+x-2-10+5x+15/(x-2)(x+3)
A= x^2+4x+3/(x-2)(x+3)
A= (x^2+x)+(3x+3)/ (x-2)(x+3)
A= x×(x+1) + 3×(x+1) / (x-2)(x+3)
A= (x+3)(x+1)/(x-2)(x+3)
A=x+1/x-2
c) để A>0 thì x+1/x-2>0
Để x+1/x-2>0 thì x+1 và x-2 phải cung dấu
Ta có hai trường hợp
TH1: x+1<0 suy ra x<-1
x-2<0. suy ra x<1
Đoi chiếu ĐKXĐ ta có x<1;x≠-3
TH2: x+1>0 suy ra x>-1
x-2>0 suy ra x>2
=) x>-1; x≠2
(Đây là toán lớp 8 chứ)
dấu (-) là sang câu hỏi khác hay la chung 1 bài vậy bạn
a) \(\sqrt{x}>1\Leftrightarrow x>1\)
b) \(\sqrt{x}< 3\Leftrightarrow x< 9\)
Vì x không âm nên x={0;1;2;3;4;5;6;7;8}
a)\(\sqrt{x}>1\Leftrightarrow\sqrt{x^2}>1^2\Leftrightarrow x>1\)
b)\(\sqrt{x}< 3\Leftrightarrow\sqrt{x^2}< 3^2\Leftrightarrow x< 9\)
\(a,x-9+y-2\sqrt{xy}\left(x;y>0\right)\)
\(=\left(\sqrt{x}\right)^2-2\sqrt{x}\sqrt{y}+\left(\sqrt{y}\right)^2-9\)
\(=\left(\sqrt{x}-\sqrt{y}\right)^2-9\)
\(=\left(\sqrt{x}-\sqrt{y}+3\right)\left(\sqrt{x}-\sqrt{y}-3\right)\)
\(b,\text{ đkxđ }x\ge0\)
\(x-5\sqrt{x}+6=\left(\sqrt{x}\right)^2-2\sqrt{x}-3\sqrt{x}+6\)
\(=\sqrt{x}.\left(\sqrt{x}-2\right)-3.\left(\sqrt{x}-2\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)\)
\(c,đ\text{kxđ }x\ge0\)
\(x-2\sqrt{x}-3=\left(\sqrt{x}\right)^2+\sqrt{x}-3\sqrt{x}-3\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)+3.\left(\sqrt{x}+1\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)\)
\(d,\text{đkxđ }x\ge0\)
\(\sqrt{x}-x^2=\sqrt{x}-\left(\sqrt{x}\right)^4=\sqrt{x}\left(1-\left(\sqrt{x}\right)^3\right)\)
\(=\sqrt{x}.\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)\)
a. \(3\sqrt{x}=15\)
<=> \(\sqrt{x}=\dfrac{15}{3}\)
<=> \(\sqrt{x}=5\)
<=> x = \(25\)
b. \(-2\sqrt{x}=-10\)
<=> \(\sqrt{x}=\dfrac{-10}{-2}\)
<=> \(\sqrt{x}=5\)
<=> \(x=25\)
c. \(\sqrt{x}>6\)
<=> \(\left(\sqrt{x}\right)^2>6^2\)
<=> x > 36
d. \(\sqrt{x}< 5\)
<=> \(\left(\sqrt{x}\right)^2=5^2\)
<=> x < 25
a)\(3\sqrt{x}=15\)⇒\(\sqrt{x}=5\)⇒x=25
b)\(-2\sqrt{x}=-10\)⇒\(\sqrt{x}=5\)⇒x=25
c)\(\sqrt{x}>6\)⇒x>36
d)\(\sqrt{x}< 5\)⇒x<25