Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm một vài câu thôi nhé, các câu còn lại tương tự.
Giải:
a) ??? Đề thiếu
b) \(\sqrt{-3x+4}=12\)
\(\Leftrightarrow-3x+4=144\)
\(\Leftrightarrow-3x=140\)
\(\Leftrightarrow x=\dfrac{-140}{3}\)
Vậy ...
c), d), g), h), i), p), q), v), a') Tương tự b)
w), x) Mình đã làm ở đây:
Câu hỏi của Ami Yên - Toán lớp 9 | Học trực tuyến
z) \(\sqrt{16\left(x+1\right)^2}-\sqrt{9\left(x+1\right)^2}=4\)
\(\Leftrightarrow4\left(x+1\right)-3\left(x+1\right)=4\)
\(\Leftrightarrow x+1=4\)
\(\Leftrightarrow x=3\)
Vậy ...
b') \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)
\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}=\sqrt{x+1}\)
\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}-\sqrt{x+1}=0\)
\(\Leftrightarrow4\sqrt{x+1}=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy ...
- Câu a có chút thiếu sót, mong thông cảm :)
\(\sqrt{3x-1}\) = 4
4.a)\(x-2\sqrt{x}+3\)
\(=x-2\sqrt{x}+1+2\)
\(=\left(\sqrt{x}-1\right)^2+2\)
Vì \(\left(\sqrt{x}-1\right)^2\ge0,\forall x\)
\(\left(\sqrt{x}-1\right)^2+2\ge2\)
\(\Rightarrow Min_{bt}=2\) khi \(\sqrt{x}-1=0\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
b)Ta có:
\(x-4\sqrt{y}+13\ge0\)
\(\Leftrightarrow x-4\sqrt{y}\ge-13\)
Dấu "=" xảy ra khi \(x-4\sqrt{y}=0\Leftrightarrow x=4\sqrt{y}\)
Vậy \(min_{bt}=0\) khi \(x=4\sqrt{y}\)
c)Ta có:
\(2x-4\sqrt{y}+6\ge0\)
\(\Leftrightarrow x-2\sqrt{y}+3\ge0\)
\(\Leftrightarrow x-2\sqrt{y}\ge-3\)
Dấu "=" xảy ra khi \(x-2\sqrt{y}=0\Leftrightarrow x=2\sqrt{y}\)
Vậy \(Min_{bt}=0\) khi \(x=2\sqrt{y}\)
d)Ta có:
\(x^2+2x+5=x^2+2x+1+4=\left(x+1\right)^2+4\)
Vì \(\left(x+1\right)^2\ge0,\forall x\)
\(\Leftrightarrow\left(x+1\right)^2+4\ge4\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)^2+4}\le\frac{1}{4}\)
\(\Leftrightarrow-\frac{1}{\left(x+1\right)^2+4}\ge-\frac{1}{4}\)
\(\Leftrightarrow-\frac{4}{\left(x+1\right)^2+4}\ge-1\)
Vậy \(Min_{bt}=-1\) khi \(x+1=0\Leftrightarrow x=-1\)
Nếu bạn tinh mắt một chút sẽ thấy:
Câu a: \(5\sqrt{2x-1}+2\sqrt{2x-1}-3\sqrt{x}=6\sqrt{2x-1}-2\sqrt{x}\)
Tương đương \(\sqrt{2x-1}=\sqrt{x}\Leftrightarrow\hept{\begin{cases}2x-1=x\\x\ge0\end{cases}}\Leftrightarrow x=1\).
Câu b: \(2\sqrt{x-5}-\sqrt{x-5}=\sqrt{1-x}\).
Tương đương \(\sqrt{x-5}=\sqrt{1-x}\Leftrightarrow\hept{\begin{cases}x\le1\\x-5=1-x\end{cases}}\) (vô nghiệm)
Câu c: \(\sqrt{\left(x+3\right)\left(x-3\right)}-2\sqrt{x-3}=0\)
Tương đương \(\orbr{\begin{cases}x-3=0\\\sqrt{x+3}-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Ấy chết! Sai ngu ở pt c rồi. Không có nghiệm \(x=1\) nha bạn.
1.Ta co:
\(\text{ }\sqrt{5x^2+10x+9}=\sqrt{5\left(x+1\right)^2+4}\ge2\)
\(\sqrt{2x^2+4x+3}=\sqrt{2\left(x+1\right)^2+1}\ge1\)
\(\Rightarrow A=\sqrt{5x^2+10x+9}+\sqrt{2x^2+4x+3}\ge2+1=3\)
Dau '=' xay ra khi \(x=-1\)
Vay \(A_{min}=3\)khi \(x=-1\)
a) \(\sqrt{x^2-10x+25}+\sqrt{x^2-6x+9}=\sqrt{\left(x-5\right)^2}+\sqrt{\left(x-3\right)^2}=\left|x-5\right|+\left|x-3\right|\)
Vì x > 5 nên x - 5 > 0 , x - 3 > 0
=> \(\left|x-5\right|+\left|x-3\right|=x-5+x-3=2x-8\)
b) Điều kiện phải là \(2\le x< 3\)
\(\sqrt{x^2-6x+9}-\sqrt{x^2-4x+4}=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x-2\right)^2}=\left|x-3\right|-\left|x-2\right|\)
Vì \(2\le x< 3\Rightarrow\hept{\begin{cases}x-2\ge0\\x-3< 0\end{cases}}\)
=> \(\left|x-3\right|-\left|x-2\right|=3-x-\left(x-2\right)=-2x+5\)
\(b.\sqrt[3]{x-17}+\sqrt{x+8}=5\) \(\left(ĐK:x\ge-8\right)\)
Đặt: \(a=\sqrt[3]{x-17},b=\sqrt{x+8}\)
\(\Rightarrow x-17=a^3,x+8=b^2\)
Khi đó:
\(\left\{{}\begin{matrix}a+b=5\\a^3-b^2=x-17-x-8=-25\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\a^3-b^2=-25\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\\left(5-b\right)^3-b^2=-25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\b^3-14b^2+75b-150=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\b^3-5b^2-9b^2+45b+30b-150=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\b^2\left(b-5\right)-9b\left(b-5\right)+30\left(b-5\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\\left(b-5\right)\left(b^2-9b+30\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\\left[{}\begin{matrix}b=5\\b^2-9b+30=\left(b-\dfrac{9}{2}\right)^2+\dfrac{39}{4}=0\left(l\right)\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=5\end{matrix}\right.\)
Thế vào ta được:
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt[3]{x-17}=0\\\sqrt{x+8}=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-17=0\\x+8=25\end{matrix}\right.\) \(\Leftrightarrow x=17\left(n\right)\)
a)\(\sqrt{4x}< =10\)
<=> 4x <= 100
<=> x <= 25
b) \(\sqrt{9x}>=3\)
<=> 9x >= 9
<=> x >= 1
c) \(\sqrt{4x^2+4x+1}=6\)
<=>\(\sqrt{\left(2x\right)^2+2\left(2x\right).1+1^2}=6\)
<=>\(\sqrt{\left(2x+1\right)^2}=6\)
<=>\(|2x+1|=6\)
<=>\(\orbr{\begin{cases}2x+1=6\\2x+1=-6\end{cases}}\)
<=>\(\orbr{\begin{cases}2x=5\\2x=-7\end{cases}}\)
<=>\(\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{-7}{2}\end{cases}}\)
d)\(\sqrt{9x-9}-2\sqrt{x-1}=6\)
<=>\(\sqrt{9\left(x-1\right)}-2\sqrt{x-1}=6\)
<=>\(3\sqrt{x-1}-2\sqrt{x-1}=6\)
<=>\(\sqrt{x-1}=6\)
<=> x - 1 = 36
<=> x = 37
f) \(\sqrt{2x+1}=\sqrt{x-1}\)
<=> 2x + 1 = x -1
<=> 2x - x = -1 -1
<=> x = -2
g)\(\sqrt{x^2-x-1}=\sqrt{x-1}\)
<=>x2 -x -1 = x -1
<=> x2 -x-x-1+1 = 0
<=> x2 - 2x + 0 = 0
<=> x(x-2) = 0
<=>\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
a) \(x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{\left(x-3\right)^2}=x+3+x-3=2x\)
b) \(\sqrt{x^2+4x+4}-\sqrt{x^2}=\sqrt{\left(x+2\right)^2}-\sqrt{x^2}=x+2-x=2\)
c) \(\sqrt{\frac{x^2-2x+1}{x-1}}=\sqrt{\frac{\left(x-1\right)^2}{x-1}}=\sqrt{x-1}\)
(Nhớ k cho mình với nhá!)
\(B=\sqrt{16a^4}+6a^2=4a^2+6a^2=10a^2\)\(A=\sqrt{49a^2}+3a=7a+3a=10a\)
\(C=4x-\sqrt{\left(x^2-4x+4\right)}=4x-\sqrt{\left(x-2\right)^2}=4x-x+2=3x+2\)
\(E=\sqrt{y^2+6y+9}-\sqrt{y^2-6y+9}=\sqrt{\left(y+3\right)^2}-\sqrt{\left(y-3\right)^2}=\left|y+3\right|-\left|y-3\right|=y+3-y+3=6\)
\(D=\dfrac{a-b}{\sqrt{a}-\sqrt{b}}=\dfrac{\left(a-b\right)\cdot\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\cdot\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{a\sqrt{a}+a\sqrt{b}-b\sqrt{a}-b\sqrt{b}}{a-b}=\dfrac{\sqrt{a}\cdot\left(a-b\right)+\sqrt{b}\cdot\left(a-b\right)}{a-b}=\dfrac{\left(a-b\right)\cdot\left(\sqrt{a}+\sqrt{b}\right)}{a-b}=\sqrt{a}+\sqrt{b}\)
ĐKXĐ: `x>=0`
`a,3\sqrt(4x)<sqrt9`
`<=>6sqrt(x)<3`
`<=>sqrtx<1/2`
`=>x<1/4` kết hợp với ĐKXĐ có `0<=x<1/2`
KL....
`b, 4\sqrt(8x)>=2`
`<=>\sqrt(8x)>=1/2`
`=>8x>=1/4`
`<=>x>=1/32(TMĐK)`
KL...