Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, => |x-6| = -(x-6)
=> x-6 < = 0
=> x < = 6
Vậy x < = 6
a, lớp 6 ko giải đc câu này nha
a) (x2 - 5)(x2 - 25) < 0
\(\Leftrightarrow\)x2 - 5 và x2 - 25 khác dấu
mà x2 - 5 > x2 - 25.Do đó: x2 - 5 > 0 và x2 - 25 < 0
\(\Leftrightarrow\)x2 - 5 và x2 - 25 \(\Leftrightarrow\)5 < x2 < 25
nên x2 = 9 ; 16
Vậy: x = 3 ; -3 ; 4 ; -4.
b) |x - 6| = 6 - x
x \(\in\)Z nên |x - 5| \(\in\)N
Do đó: x - 5 \(\in\)N hay 6 - x \(\ge\)0
x \(\le\)6
a, Vì \(\left|3x-6\right|\ge0\) với mọi x
\(\left(x+2\right)^2\ge0\) với mọi x
=> \(\left|3x-6\right|+\left(x+2\right)^2\ge0\)
mà \(\left|3x-6\right|+\left(x+2\right)^2=0\)
Dấu "=" xảy ra <=> \(\orbr{\begin{cases}3x-6=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}}\)
a) /3x-6/+(x+2)^2=0
vì 3x-6 lớn hơn hoặc bằng 0 Với mọi x thuộc Z
(x+2)^2 lớn hơn hoặc bằng 0 Với mọi x thuộc Z
nên /3x-6/+(x+2)^2=0
khi 3x-6=0 suy ra x=2
(x+2)^2=0 suy ra x=-2
vậy x=2 hoặc x=-2
2, có 2 th
th1: x+5>0 và 3x-12>0
th2: x+5<0 và 3x-12<0
bn tự giải tiếp nha phần sau dễ
mk biết làm bài 2 rồi nhưng bài 3 mk chưa biết làm, bạn chỉ cầ làm kĩ bài 3 cho mk thôi
a) a^2>0. Nếu a^2= (-).(-); (+).(+) thì ta có
th1: (+) . (+) = (+) Chọn (+)2 a^2>0
th2: (-). (-) = (+) Chọn (-)2 a^2>0
Vậy...
làm bổ sung cho câu b) là : muốn A có giá trị nhỏ nhất thì (x-8)2 phải có giá trị nhỏ nhất mà giá trị nhỏ nhất của (x-8)2 là 0
=) A có giá trị nhỏ nhất là -2018
c) : muốn B có giá trị lớn nhất thì -(x+5)2 phải có giá trị lớn nhất mà -(x+5)2 có giá trị lớn nhất là \(\infty\)mà không có số nào là số lớn nhất =) B vẫn chỉ có giá trị lớn nhất là \(\infty\)
\(\left|2x\right|+2x=0\)
\(\Rightarrow\left|2x\right|=-2x\)
\(\Rightarrow2x\le0\)
\(\Rightarrow x\le0\)
Vậy \(x\le0\)
\(\left(x-1\right).\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
\(\left|x-3\right|+x-3=0\)
\(\left|x-3\right|=-x+3\)
\(\left|x-3\right|=-\left(x-3\right)\)
\(\Rightarrow x-3\le0\)
\(\Rightarrow x\le3\)
Vậy \(x\le3\)
\(\left(x+1\right)^3=\left(x+1\right)^5\)
\(\left(x+1\right)^5-\left(x+1\right)^3=0\)
\(\left(x+1\right)^3.\left[\left(x+1\right)^2-1\right]=0\)
\(\orbr{\begin{cases}\left(x+1\right)^3=0\\\left(x+1\right)^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}}\)hoặc \(x=-2\)
Vậy \(x\in\left\{-1;0;-2\right\}\)
\(\left(x-2\right)^3=2^9\)
\(\left(x-2\right)^3=\left(2^3\right)^3\)
\(\Rightarrow x-2=2^3\)
\(x=8+2\)
\(x=10\)
Vậy \(x=10\)
Câu 6 tương tự câu 4
Tham khảo nhé~
P/S: nên chia nhỏ đăng thành nhiều bài khác nhau
a, \(x^2+5< 25\)
\(x^2< 20\)
\(x=1;2;3;4\)
b, \(\frac{10x+8}{10x-15}\in Z\)
\(\left(10x+8\right)-\left(10x-15\right)⋮10x-15\)
\(10x+8-10x+15⋮10x-15\)
\(23⋮10x-15\)
=>\(10x-15\inƯ_{23}=\left\{-1;1;23;-23\right\}\)
\(TH1:10x-15=-1\) \(TH2:10x-15=1\) \(TH3:10x-15=23\)
\(x=\frac{14}{10}\notin Z\) \(x=\frac{16}{10}\notin Z\) \(x=\frac{38}{10}\notin Z\)
\(TH4:10x-15=-23\)
\(x=\frac{8}{10}\notin Z\)
a) ( x2 + 5 )( x2 - 25 ) =0
=> x2 + 5 =0 hoặc x2 -25 =0
=> x = \(\sqrt{-5}\) hoặc x = 5
Dễ thấy: x^2+5>0
nên: x^2-25=0
<=> (x+5)(x-5)=0 <=> x+5=0 hoặc: x-5=0
<=> x=+-5