Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2n + 1 chia hết cho n - 5
=> 2n - 10 + 11 chia hết cho n - 5
=> 2(n - 5) + 11 chia hết cho n - 5
Mà 2(n - 5) chia hết cho n - 5
=> 11 chia hết cho n - 5
=> n - 5 \(\in\) Ư(11) = {-1;1;-11;11}
=> n \(\in\){4;6;-6;16}
1, 3n +2 chia hết cho n - 1
=> 3n - 3 + 5 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc ước của 5 là 1;-1;5;-5
=> n thuộc 2 ;0;6;-4;
\(\text{1,3n + 2 chia hết cho n - 1 }\)
= > 3n - 3 + 5 chia hết cho n - 1
= > 5 chia hết cho n - 1
= > n - 1 thuộc ước của 5 là : 1;-1;5;-5
= > n thuộc 2;0;6;-4;
2n+3 chia hết cho n-2
=> 2n-4+7 chia hết cho n-2
Vì 2n-4 chia hết cho n-2
=> 7 chia hết cho n-2
Mà n thuộc N
=> n-2 thuộc các ước dương của 7
n-2 | n |
1 | 3 |
7 | 9 |
KL: n thuộc..............
a) 2n + 3 \(⋮\)n - 2
Có: 2n + 3 = 2.(n - 2) + 5 \(⋮\)n - 2
Vì n - 2 \(⋮\)n - 2 => Để 2n + 3 \(⋮\)n - 2 => 5 \(⋮\)n - 2 => n - 2 là Ước của 5
Ước của 5 \(\in\){1;2}
Với n - 2 = 1 => n = 1 + 2 = 3
Với n - 2 = 2 => n = 2 + 2 = 4
Vậy với n = {3;4} => 2n + 3 \(⋮\)n - 2
a) \(n^2-3n+9\)chia het cho \(n-2\)
\(\Leftrightarrow\)\(n^2-2n-n-2+11\)chia het cho \(n-2\)
\(\Leftrightarrow\)\(\left(n-2\right)\left(n+1\right)+11\)chia het cho \(n-2\)
\(\Leftrightarrow\)11 chia het cho \(n-2\)
\(\Rightarrow\)\(n-2\in U\left(11\right)\)\(\Rightarrow\)\(n-2\in\left\{-11;-1;1;11\right\}\)
\(\Rightarrow\)\(n\in\left\{-9;1;3;13\right\}\)
b) 2n-1 chia hết cho n-2
\(\Rightarrow2n-2+3\) chia hết cho\(n-2\)
\(\Rightarrow3\)chia hết cho \(n-2\)
\(\Rightarrow n-2\in U\left(3\right)\)\(\Rightarrow n-2\in\left\{-3;-1;1;3\right\}\)\(\Rightarrow n\in\left\{-1;1;3;5\right\}\)
a: \(\Leftrightarrow n+2+5⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{-1;-3;3;-7\right\}\)
b: \(\Leftrightarrow n-3-6⋮n-3\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{4;2;5;1;6;0;9;-3\right\}\)
c: \(\Leftrightarrow17⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;17;-17\right\}\)
hay \(n\in\left\{0;-2;16;-18\right\}\)