Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,234-\left(x-56\right)=789\)
\(\Leftrightarrow x-56=234-789\)
\(\Leftrightarrow x-56=-555\)
\(\Leftrightarrow x=\left(-555\right)+56=-499\)
Vậy x = -499
b) \(\frac{x+3}{-5}=\frac{x-15}{4}\)
\(\Leftrightarrow4\left(x+3\right)=-5\left(x-15\right)\)
\(\Leftrightarrow4x+12=-5x+75\)
\(\Leftrightarrow4x+12-\left(-5x\right)=75\)
\(\Leftrightarrow4x-\left(-5x\right)+12=75\)
\(\Leftrightarrow4x+5x=63\)
\(\Leftrightarrow9x=63\)
\(\Leftrightarrow x=7\)
Vậy x = 7
c) \(8\left(x-1\right)-7=2\left(x+2\right)+5\)
\(\Leftrightarrow8x-8-7=2x+4+5\)
\(\Leftrightarrow8x-8-7-2x+4=5\)
\(\Leftrightarrow8x-2x-8-7+4=5\)
\(\Leftrightarrow8x-2x=5-4+7+8\)
\(\Leftrightarrow4x=16\)
\(\Leftrightarrow x=4\)
Vậy x = 4
d) Đặt \(D=\frac{2x+3}{x-1}=\frac{2x-2+5}{x-1}=\frac{2\left(x-1\right)+5}{x-1}=2+\frac{5}{x-1}\)
=> \(5⋮x-1\)
=> \(x-1\inƯ\left(5\right)\)
=> \(x-1\in\left\{\pm1;\pm5\right\}\)
=> \(x\in\left\{2;0;6;-4\right\}\)
Tìm x εIN biết
a) 390 - (x-8) = 168:13
b) (x-140) : 7 = 27 - 24
c) x- 6 :2 - ( 48 - 24 ) :2 :6 - 3 = 0
d) x+5.2-(32+16.3:6-15)=0
b) \(\left(x-140\right):7=27-24\)
\(\left(x-140\right):7=3\)
\(x-140=21\)
\(x=161\)
vay \(x=161\)
c) \(x-6:2-\left(48-24\right):2:6-3=0\)
\(x-3-24:2:6-3=0\)
\(x-3-2-3=0\)
\(x-8=0\)
\(x=8\)
vay \(x=8\)
d) \(x+5.2-\left(32+16.3:6-15\right)=0\)
\(x+10-\left(32+8-15\right)=0\)
\(x+10-25=0\)
\(x-15=0\)
\(x=15\)
vay \(x=15\)
a) \(390-\left(x-8\right)=168:13\)
\(390-x+8=\frac{168}{13}\)
\(x+8=390-\frac{168}{13}\)
\(x+8=\frac{5070}{13}-\frac{168}{13}\)
\(x+8=\frac{4902}{13}\)
\(x=\frac{4902}{13}-8\)
\(x=\frac{4798}{13}\)
vay \(x=\frac{4798}{13}\)
a) \(x +(x + 1) + (x + 2) + ... + (x +30) = 620\)
\(=\left(x+x+...+x+x\right)+\left(1+2+...+30\right)\)
\(=31x+465=620\)
\(=31x=620-465\)
\(=31x=155\)
\(=x=155\div31\)
\(x=5\)
b) \(2+4+6+8+....+2x = 210\)
\(\Rightarrow2.1+2.2+2.3+2.4+...+2.x\)
\(\Rightarrow2.\left(2+4+6+8+...+x\right)=210\)
\(\Rightarrow2+4+6+8+x=210\div2\)
\(\Rightarrow2+4+6+8+...+x=105\)
\(\Rightarrow x=14\)
\(a,\frac{1}{2}+\frac{2}{3}x=\frac{4}{5}\)
=> \(\frac{2}{3}x=\frac{4}{5}-\frac{1}{2}=\frac{3}{10}\)
=> \(x=\frac{3}{10}:\frac{2}{3}=\frac{9}{20}\)
Vậy \(x\in\left\{\frac{9}{20}\right\}\)
\(b,x+\frac{1}{4}=\frac{4}{3}\)
=> \(x=\frac{4}{3}-\frac{1}{4}=\frac{13}{12}\)
Vậy \(x\in\left\{\frac{13}{12}\right\}\)
\(c,\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\)
=> \(\frac{3}{5}x=-\frac{1}{7}+\frac{1}{2}=\frac{5}{14}\)
=> \(x=\frac{5}{14}:\frac{3}{5}=\frac{25}{42}\)
Vậy \(x\in\left\{\frac{25}{42}\right\}\)
\(d,\left|x+5\right|-6=9\)
=> \(\left|x+5\right|=9+6=15\)
=> \(\left[{}\begin{matrix}x+5=15\\x+5=-15\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=15-5=10\\x=-15-5=-20\end{matrix}\right.\)
Vậy \(x\in\left\{10;-20\right\}\)
\(e,\left|x-\frac{4}{5}\right|=\frac{3}{4}\)
=> \(\left[{}\begin{matrix}x-\frac{4}{5}=\frac{3}{4}\\x-\frac{4}{5}=-\frac{3}{4}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{3}{4}+\frac{4}{5}=\frac{31}{20}\\x=-\frac{3}{4}+\frac{4}{5}=\frac{1}{20}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{31}{20};\frac{1}{20}\right\}\)
\(f,\frac{1}{2}-\left|x\right|=\frac{1}{3}\)
=> \(\left|x\right|=\frac{1}{2}-\frac{1}{3}\)
=> \(\left|x\right|=\frac{1}{6}\)
=> \(\left[{}\begin{matrix}x=\frac{1}{6}\\x=-\frac{1}{6}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{1}{6};-\frac{1}{6}\right\}\)
\(g,x^2=16\)
=> \(\left|x\right|=\sqrt{16}=4\)
=> \(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
vậy \(x\in\left\{4;-4\right\}\)
\(h,\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
=> \(x-\frac{1}{2}=\sqrt[3]{\frac{1}{27}}=\frac{1}{3}\)
=> \(x=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}\)
Vậy \(x\in\left\{\frac{5}{6}\right\}\)
\(i,3^3.x=3^6\)
\(x=3^6:3^3=3^3=27\)
Vậy \(x\in\left\{27\right\}\)
\(J,\frac{1,35}{0,2}=\frac{1,25}{x}\)
=> \(x=\frac{1,25.0,2}{1,35}=\frac{5}{27}\)
Vậy \(x\in\left\{\frac{5}{27}\right\}\)
\(k,1\frac{2}{3}:x=6:0,3\)
=> \(\frac{5}{3}:x=20\)
=> \(x=\frac{5}{3}:20=\frac{1}{12}\)
Vậy \(x\in\left\{\frac{1}{12}\right\}\)
1. Tính nhanh:
a) -37 + 54 + (-70) + (-163) + 246
= (-70) + {[(-163) + (-37)] + (246 + 54)}
= (-70) + [(-200) + 300]
= (-70) + 100
= 30
b) 24 - (-136) - (-70) + 15 - (-115)
= 24 + 136 + 70 + 15 + 115
= [70 + (15 + 115)] + (24 + 136)
= 70 + 130 + 160
= 200 + 160
= 360
2. Tính giá trị của các biểu thức sau bằng cách hợp lí nhất:
a) 136 . (- 47) + 36 . 47
= -136 . 47 + 36 . 47
= 47(-136 + 36)
= 47 . (-100)
= -4700
b) (- 48) . 72 + 36 . (- 304 )
= (- 48) . 72 + 72 . (-152)
= 72(-48 - 152)
= 72 . (-200)
= -14400
14. Tính tổng các số nguyên x biết:
a) - 2017 ≤ x ≤ 2018
x ∈ {-2017; -2016; ....; 2017; 2018}
Tổng các số nguyên x là :
(-2017) + (-2016) + .... + 2017 + 2018
= 2018 + [(-2017) + 2017] + [(-2016) + 2016] + ....
= 2018 + 0 + 0 + ....
= 2018
b) a + 3 ≤ x ≤ a + 2018 (a ∈ N)
x ∈ {a + 3; a + 4; ...; a + 2018}
Tổng các số nguyên x là :
a + 3 + a + 4 + .... + a + 2018
(2018 - 3) : 1 + 1 = 2016
= 2016a + (3 + 4 + .... + 2018)
(2018 + 3) . 2016 : 2 = 2037168
= 2016a + 2037168
3. Tìm x ∈ Z biết:
a) (x + 1) + (x + 3) + (x + 5) + …+ (x + 99) = 0
= (x + x + ... + x) + (1 + 3 + 5 + ... + 99) = 0
(99 - 1) : 2 + 1 = 50
(99 + 1) . 50 : 2 = 2500
x . 50 + 2500 = 0
x . 50 = -2500
x = -50
b) (x – 3) + (x - 2) + (x – 1 ) + … + 10 + 11 = 11
(x – 3) + (x - 2) + (x – 1 ) + … + 10 = 0
[(x – 3) + (x - 2) + (x – 1 )] + (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10) = 0
[(x – 3) + (x - 2) + (x – 1 )] + 55 = 0
(x – 3) + (x - 2) + (x – 1 ) = -55
x + x + x + (-3 - 2 - 1) = -55
3x + (-6) = -55
3x = -49
x = -49/3
c) x + (x + 1) + (x + 2) + ..... + 2018 + 2019 = 2019
x + (x + 1) + (x + 2) + ..... + 2018 = 0
(2018 - x) : 1 + 1 = 2019 - x
(2018 + x) : 2
⇒ (2019 - x) . [(2018 + x) : 2] = 0
✽ 2019 - 2019 = 0
⇒ x = 2019 (loại vì x = 2019 thì số số hạng sẽ là 0)
✽ 2018 + (-2018) = 0
⇒ x = -2018 (nhận)
x = -2018
e) \(\left(x-3\right)\left(x^2+1\right)=0\)
\(\Rightarrow\left(x-3\right)=0\) ( \(x^2+1>0\forall x\))
\(\Rightarrow x=3\)
đ) \(4.8^2=2^x\)
\(2^2.\left(2^3\right)^2=2^x\)
\(2^2.2^6=2^x\)
\(2^8=2^x\)
\(\Rightarrow x=8\)
d) \(\left|x+3\right|=8\)
\(\Rightarrow\orbr{\begin{cases}x+3=8\\x+3=-8\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-11\end{cases}}\)
mấy câu trên dễ rồi tự làm em nhé
d) \(x.\left(y+2\right)-y=15\)
\(\Rightarrow x.\left(y+2\right)=15+y\)
\(\Rightarrow x=\frac{y+15}{y+2}=\frac{y+2+13}{y+2}=1+\frac{13}{y+2}\)
y + 2 là ước nguyên của 13
\(y+2=1\Rightarrow y=-1\Rightarrow x=14\)
\(y+2=-1\Rightarrow y=-3\Rightarrow x=-12\)
\(y+2=13\Rightarrow y=11\Rightarrow x=2\)
\(y+2=-13\Rightarrow y=-15\Rightarrow x=0\)
Ai thấy đúng thì ủng hộ, mink chỉ làm được vậy thuu
a) x-12:(-2)=4
=> x-12=-8
=> x=4
b ) 6-|x| = 5
=> /x/=1
=> x=1;-1
c ) 7⋮ ( x-3)
=> (x-3) thuộc Ư(7)
=> x-3=1 => x=4
=> x-3=-1 => x=2
=> x-3=7 => x= 10
=> x-3=-7 => x=-4
d ) 3⋮ ( 2x+1 )
=> (2x+1) thuộc Ư(3)
=> (2X+1)= 1 => x= 0
=> (2x+1)=-1 => x= -1
=> 2x+1= 3 => x= 1
=> 2x+1=-3 => x= -2
a) \(x-12:\left(-2\right)=4\Rightarrow x-\left(-6\right)=4\Rightarrow x=\left(-6\right)+4=-2\)
b) \(6-\left|x\right|=5\Rightarrow\left|x\right|=6-5=1\Rightarrow x=\left\{\pm1\right\}\)
c)\(7⋮x-3\Rightarrow x-3\inƯ\left(7\right)\)
\(Ư\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(x=\left\{4;2;10;-4\right\}\)
d) \(3⋮2x+1\Rightarrow2x+1\inƯ\left(3\right)\)
\(Ư\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(x\in\left\{0;-1;1;-2\right\}\)
a ) + ) Xét x \(\ge\) 3 => |x - 3| = x - 3
=> |x - 3| + x - 3 = x - 3 + x - 3 = 0
<=> 2x - 6 = 0
<=> 2x = 6
=> x = 3
+ ) Xét x < 3 => |x - 3| = 3 - x
=> |x - 3| + x - 3 = 3 - x + x - 3 = 0
<=> 0 = 0 ( loại )
Vậy x = 3
ý khác tương tự