Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5+3^5}\cdot\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5+2^5+2^5+2^5+2^5}=2^x\)
\(\Leftrightarrow2^x=\dfrac{4^5}{3^5}\cdot\dfrac{6^5}{2^5}=4^5=2^{10}\)
=>x=10
b: \(\left(x-1\right)^{x+4}=\left(x-1\right)^{x+2}\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\)
\(\Leftrightarrow x\left(x-1\right)^{x+2}\cdot\left(x-2\right)=0\)
hay \(x\in\left\{0;1;2\right\}\)
c: \(6\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)
\(\Leftrightarrow5\cdot\left(6-x\right)^{2003}=0\)
\(\Leftrightarrow6-x=0\)
hay x=6
1+3+5+...+x=1600
=(x+1).[(x-1):2+1] /2 =1600
=(x+1).(x+1) /2 =1600
=(x+1)^2:2=40^2
=(x+1):2=40
=x+1=80
=x=79
a, Vì \(\left|3x-6\right|\ge0\) với mọi x
\(\left(x+2\right)^2\ge0\) với mọi x
=> \(\left|3x-6\right|+\left(x+2\right)^2\ge0\)
mà \(\left|3x-6\right|+\left(x+2\right)^2=0\)
Dấu "=" xảy ra <=> \(\orbr{\begin{cases}3x-6=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}}\)
a) /3x-6/+(x+2)^2=0
vì 3x-6 lớn hơn hoặc bằng 0 Với mọi x thuộc Z
(x+2)^2 lớn hơn hoặc bằng 0 Với mọi x thuộc Z
nên /3x-6/+(x+2)^2=0
khi 3x-6=0 suy ra x=2
(x+2)^2=0 suy ra x=-2
vậy x=2 hoặc x=-2
Ta có : \(A=\frac{4x+3}{x-2}=\frac{2\left(x-2\right)+7}{x-2}=2+\frac{7}{x-2}\)
Để \(A\in Z\)thì \(7⋮x-2\)hay x-2 là Ư(7)={1;-1;7;-7}
Do đó:
x-2 | 1 | -1 | 7 | -7 |
x | 3 | 1 | 9 | -5 |
Vậy .....
Ta có : \(B=\frac{2x-15}{x+1}=\frac{2\left(x+1\right)-17}{x+1}=2-\frac{17}{x+1}\)
Để \(B\in Z\)thì \(17⋮x+1\)hay x+1 là Ư(17)={1;-1;17;-17}
Do đó :
x+1 | 1 | -1 | 17 | -17 |
x | 0 | -2 | 16 | -18 |
Vậy ................
Số số hạng là :
(2x - 2) : 2 + 1 = x - 1 + 1 = x (số)
Tổng là :
(2x + 2).x : 2 = 210
=> (2x2 + 2x) : 2 = 210
=> x2 + x = 210
=> x(x + 1) = 210
=> x(x + 1) = 20.21
=> x = 20
Vậy x = 20
Ta có : \(\frac{x}{2}=\frac{10}{x+1}\)
=> x(x + 1) = 10.2
=> x(x + 1) = 20
=> sai đề
a) x17 = x=>x=0 và x=1
b) (x-6)2 = (x-6)3
=> x=6 và x=7
Các bạn giải thích đầy đủ nha, mình k cho