Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phần b tham khảo ở đây nhé :
Câu hỏi của Nguyễn Sĩ Hải Nguyên - Toán lớp 6 - Học toán với OnlineMath
( https://olm.vn/hoi-dap/detail/45713562308.html)
Câu b:
Giải:
Ta có: 4n-5 = 2(2n-1)-5 chia hết 2n-1
mà 2(2n-1) chia hết cho 2n-1
Suy ra 5 cũng sẽ chia hết cho 2n-1 => 2n-1 thuộc Ư(5)
=> Ta có bảng sau
2n-1 | 5 | 1 |
2n | 6 | 2 |
n | 3 | 1 |
Vậy n e { 3;1 }
Để thỏa mãn đề bài thì 7n+13 phải chia hết cho n+1 và 3n+1
Trước hết ta xét:\(7n+13⋮n+1\Rightarrow\left(7n+7\right)+6⋮n+1\Rightarrow7\left(n+1\right)+6⋮n+1\Rightarrow6⋮n+1\)
Mà \(n\inℕ^∗\Rightarrow n+1\inℕ^∗\)
\(\Rightarrow n+1\in\left\{2;3;6\right\}\Rightarrow n\in\left\{1;2;5\right\}\)
Lần lượt thay các giá trị của n vào 7n+13 và 3n+1 xem 7n+13 có chia hết cho 3n+1 không
Sau khi thử thì còn các giá trị n là 1;5 thỏa mãn
Vậy n=1 hoặc n=5
Để 7n +13 là mẫu số chung của \(\frac{n}{n+1}và\frac{3}{3n+1}\) thì 7n+13 phải chia hết cho n+1 và 3n+1
*Xét 7n+13\(⋮\)n+1(1)
+)Ta có:n+1\(⋮\)n+1
=>7.(n+1)\(⋮\)n+1
=>7n+7\(⋮\)n+1(2)
+)Từ (1) và (2)
=>(7n+13)-(7n+7)\(⋮\)n+1
=>7n+13-7n-7\(⋮\)n+1
=>6\(⋮\)n+1
=>n+1\(\in\)Ư(6)={\(\pm\)1;\(\pm\)2;\(\pm\)3}
=>n\(\in\){-2\(\notin\)N*;0\(\notin\)N*;-3\(\notin\)N*;1\(\in\)N*;-4\(\notin\)N*;2\(\in\)N*}
=>n\(\in\){1;2}(*)
*Xét 7n+13\(⋮\)3n+1
=>3.(7n+13)\(⋮\)3n+1
=>21n+39\(⋮\)3n+1(3)
+)Ta có:3n+1\(⋮\)3n+1
=>7.(3n+1)\(⋮\)3n+1
=>21n+7\(⋮\)3n+1(4)
+)Từ (3) và (4)
=>(21n+39)-(21n+7)\(⋮\)3n+1
=>21n+39-21n-7\(⋮\)3n+1
=>32\(⋮\)3n+1
=>3n+1\(\in\)Ư(32)={\(\pm\)1;\(\pm\)2;\(\pm\)4;\(\pm\)8;\(\pm\)16;\(\pm\)32}
+)Ta có bảng:
3n+1 | -1 | 1 | -2 | 2 | -4 | 4 | -8 | 8 | -16 | 16 | -32 | 32 |
n | \(\frac{-2}{3}\)\(\notin\)N* | 0\(\notin\)N* | -1\(\notin\)N* | \(\frac{1}{3}\)\(\notin\)N* | \(\frac{-5}{3}\)\(\notin\)N* | 1\(\in\)N* | -3\(\notin\)N* | \(\frac{7}{3}\)\(\notin\)N* | -5\(\notin\)N* | 5\(\in\)N* | \(\frac{-31}{3}\)\(\notin\)N* | \(\frac{31}{3}\)\(\notin\)N* |
=>n\(\in\){1;5}(**)
+)Từ (*) và (**)
=>n=1
Vậy n=1
Chúc bn học tốt
a) 32 . 3n = 35
=> 3n = 35 : 32
=> 3n = 33
=> n = 3
b) (22 : 4) . 2n = 4
=> (4 : 4) . 2n = 4
=> 2n = 4
=> 2n = 22
=> n = 2
c) \(\frac{1}{9}.3^4.3^n=3^7\)
\(\Rightarrow3^{-2}.3^4.3^n=3^7\)
\(\Rightarrow3^{-2+4+n}=3^7\)
\(\Rightarrow3^{2+n}=3^7\)
\(\Rightarrow2+n=7\)
\(\Rightarrow n=5\)
d) \(\frac{1}{9}.27^n=3^n\)
\(\Rightarrow3^{-2}.3^{3n}=n\)
\(\Rightarrow3^{-2+3n}=n\)
\(\Rightarrow-2+3n=n\)
\(\Rightarrow2n=2\)
\(\Rightarrow n=1\)
\(n^2+n+1⋮n+2\)\(\Rightarrow n^2+2n-n+1⋮n+2\Rightarrow n-1⋮n+2\Rightarrow n+2-3⋮n+2\)
đến đây 3 chia het cho n+2 suy ra n+2 thuoc uoc cua 3. bạn tính đc các giá trị thỏa mãn điều kiện n thuộc số tự nhiên và lớn hơn 0 đó là n=1