Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(2x=3y=5z\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-2y}{15-2\cdot10}=\frac{x-2y}{-5}\)
*TH1: Nếu x-2y = 5
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{5}{-5}=-1\)
\(\Rightarrow\hept{\begin{cases}x=-15\\y=-10\\z=-6\end{cases}}\)\(\Rightarrow3x-2z=3\left(-15\right)-2\cdot6=-45-12=-57\)
*TH2: Nếu x-2y = -5
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=1\)\(\Rightarrow\hept{\begin{cases}x=15\\y=10\\z=6\end{cases}\Rightarrow3x-2z=3\cdot15-2\cdot6=45-12=33}\)
Vậy giá trị nhỏ nhất của 3x - 2z là -57.
2)\(B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\le1+\frac{12}{3}=5\)
Dấu "=" xảy ra khi x = 0.
Bài giải
a, Ta có : \(A=\left|x-1\right|+\left|x-2\right|\)
* Với x < 2 thì :
\(A=-\left(x-1\right)-\left(x-2\right)\)
\(A=-x+1-x+2\)
\(A=-2x+3\)
* Với x > 2 thì :
\(A=x-1+x-2\)
\(A=2x-3\)
b, Ta có :
\(B=\frac{42-y}{y-15}=\frac{15-y+27}{y-15}=\frac{15-y}{y-15}+\frac{27}{y-15}=-1+\frac{27}{y-15}\)
B đạt GT nguyên NN khi \(\frac{27}{y-15}\) đạt GT nguyên NN
\(\Rightarrow\text{ }y\ne15\)
Ta xét 2 trường hợp :
* Với y < 15 => \(\frac{27}{y-15}< 0\text{ }\Rightarrow\text{ }B< 0\)
* Với y > 15 => \(\frac{27}{y-15}>0\text{ }\Rightarrow\text{ }B>0\)
Mà ta đang tìm GT nguyên NN của \(\frac{27}{y-15}\) \(\Rightarrow\) y - 15 đạt GTLN và y < 15 , x nguyên => y = 14
=> GTNN của \(\frac{27}{y-15}=\frac{27}{-1}=-27\)
\(\Rightarrow\)GT nguyên NN của B = - 1 + ( - 27 ) = - 28 khi x = - 14
\(A=\frac{5-x}{x-2}=\frac{3+2-x}{x-2}=\frac{3-x+2}{x-2}=\frac{3-\left(x-2\right)}{x-2}=\frac{3}{x-2}-1\)
A có GTNN \(\Leftrightarrow\) \(\frac{3}{x-2}\) có GTNN. Mà x - 2 \(\ne\) 0 nên x \(\ne\) 2
- Với x > 2 thì \(\frac{3}{x-2}>0\)
- Với x < 2 thì \(\frac{3}{x-2}<0\) \(\Rightarrow\frac{3}{2-x}>0\)
Vậy ta chỉ xét x < 2
\(\frac{3}{x-2}\) có GTNN \(\Leftrightarrow\frac{3}{2-x}\) có GTLN \(\Leftrightarrow\) 2 - x có GTNN (vì \(\frac{3}{2-x}>0\))
\(\Leftrightarrow\) x lấy GTLN \(\Leftrightarrow\) x = 1 (vì x \(\in\) Z ; x < 2 và nếu x là số âm thì 2 - x = 2 + (-x) là số dương nên không mang GTLN)
Lúc đó GTNN của A = \(\frac{3}{1-2}-1=-3-1=-4\) (\(\Leftrightarrow\) x = 1)