Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:\(x\ge0\); \(x\ne9\)
ta có: \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\in N\)
\(\Leftrightarrow1+\frac{4}{\sqrt{x}-3}\in N\)
để \(1+\frac{4}{\sqrt{x}-3}\)có giá trị nguyên dương thì 4 phải chia hết cho \(\sqrt{x}-3\)
\(\Rightarrow\sqrt{x}-3=\left\{-4;-2;-1;1;2;4\right\}\)
*\(\sqrt{x}-3=-4\Leftrightarrow\sqrt{x}=-1\)(vô lí)
*\(\sqrt{x}-3=-2\Leftrightarrow x=1\)
*\(\sqrt{x}-3=-1\Leftrightarrow x=4\)
*\(\sqrt{x}-3=1\Leftrightarrow x=16\)
*\(\sqrt{x}-3=2\Leftrightarrow x=25\)
*\(\sqrt{x}-3=4\Leftrightarrow x=49\)
vậy \(x\in\left\{1;4;16;25;49\right\}\) thì \(\frac{\sqrt{x}+1}{\sqrt{x-3}}\)có giá trị nguyên dương
ĐK: \(x\ge-1;x\ne3\)
\(B^2=\frac{x+1}{x-3}=\frac{x-3+4}{x-3}=1+\frac{4}{x-3}\)
Để \(B^2\) có giá trị nguyên dương thì \(\frac{4}{x-3}\) có giá trị nguyên dương.Tức là x - 3 > 0
Và \(x-3\inƯ\left(4\right)=\left\{1;2;4\right\}\)
Suy ra \(x\in\left\{4;5;7\right\}\).Để B có giá trị nguyên dương thì \(B^2\) là số chính phương.
Với x = 4: \(B^2=1+\frac{4}{x-3}=1+4=5\) (loại)
Với x = 5: \(B^2=1+\frac{4}{x-3}=1+2=3\)(loại)
Với x = 7: \(B^2=1+\frac{4}{x-3}=1+1=2\)(loại)
Vậy không có giá trị nào của x thuộc Z đề B có giá trị nguyên dương.
Ta có căn(x + 5) + 2/11 >= 2/11 (vì căn (x+5) >= 0)
Vậy A đạt giá trị nhỏ nhất là 2/11 khi và chỉ khi x = -5
Ta có : 3/19 - 3.căn(x - 2) <= 3/19 ( vì -3.căn(x-2) <= 0)
Vậy B đạt giá trị lớn nhất là 3/19 khi và chỉ khi x = 5
C = (căn - 3)/2 có giá trị nguyên nên (căn - 3) chia hết cho 2
Suy ra x là số chính phương lẻ
Vì x < 50 nên x thuộc { 1^2;3^2;5^2;7^2} hay x thuộc {1;9;25;49}