\(\in\) N biết 
 a ) 35 \(⋮\) ( 2x - 1 )
 b...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2018

a)Vì 35\(⋮\)(2x-1)

=>2x-1 \(\in\)Ư(35)

=>2x-1\(\in\){1;-1;5;-5;7;-7;35;-35}

=>2x\(\in\){2;0;6;-4;8;-6;36;-34}

=>x\(\in\){1;0;3;-2;4;-3;18;-17}

2 tháng 11 2018

b)18\(⋮\)(x+1)

=>x+1\(\in\)Ư(18)

=>x+1\(\in\){1;-1;2;-2;3;-3;6;-6;9;-9;18;-18}

=>x\(\in\){0;-2;1;-3;2;-4;5;-7;8;-10;17;-19}

27 tháng 11 2016

6x+21 chia het cho 2x+1

3.(2x+1)+18 chia het cho 2x+1

=> 18 chia het cho (2x+1)

2x+1=(-1,-2,-3,-6,-9,-18;1,2,3,6,9,18)

x={0,1,4,}

4 tháng 11 2018

\(x=\left\{9\right\}\)

28 tháng 1 2017

Giải:

4.Theo đề bài ta có:

\(A=7.a+4 \)

\(=17.b+3 \)

\(=23.c+11 (a,b,c ∈ N)\)

Nếu ta thêm 150 vào số đã cho thì ta lần lượt có:

\(A+150=7.a+4+150=7.a+7.22=7.(a+22)\)

\(=17.b+3+150=17.b+17.9=17.(b+9)\)

\(=23.c+11+150=23.c+23.7=23.(c+7) \)

\(\Rightarrow A+150⋮7;17;23\).Nhưng 7, 17 và 23 là ba số đôi một nguyên tố cùng nhau, suy ra \(A+150⋮7.17.13=2737\)

Vậy \(A+150=2737k\left(k=1;2;3;4;...\right)\)

Suy ra: \(A=2737k-150=2737k-2737+2587=2737(k-1)+2587=2737k+2587\)

Do \(2587<2737\)

\(\Rightarrow A\div2737\)\(2587\)

29 tháng 1 2017

Bạn ơi, A=23c+7 chứ. Sao lại= 23c+11?

27 tháng 7 2018

a) \(\frac{3}{7}x-\frac{1}{35}=\frac{3}{5}\)

\(\frac{3}{7}x=\frac{3}{5}+\frac{1}{35}\)

\(\frac{3}{7}x=\frac{22}{35}\)

\(x=\frac{49}{35}=1,4\)

27 tháng 7 2018

b) \(1,5-x:\frac{1}{2}=\frac{1}{4}\)

\(x:\frac{1}{2}=1,5-\frac{1}{4}\)

\(x:\frac{1}{2}=\frac{5}{4}\)

\(x=\frac{5}{4}.\frac{1}{2}\)

\(x=\frac{5}{8}\)

Vậy ..

2 tháng 5 2017

d) \(x.\left(y+2\right)-y=15\)

\(\Rightarrow x.\left(y+2\right)=15+y\)

\(\Rightarrow x=\frac{y+15}{y+2}=\frac{y+2+13}{y+2}=1+\frac{13}{y+2}\)

y + 2 là ước nguyên của 13

\(y+2=1\Rightarrow y=-1\Rightarrow x=14\)

\(y+2=-1\Rightarrow y=-3\Rightarrow x=-12\)

\(y+2=13\Rightarrow y=11\Rightarrow x=2\)

\(y+2=-13\Rightarrow y=-15\Rightarrow x=0\)

Ai thấy đúng thì ủng hộ, mink chỉ làm được vậy thuu

27 tháng 6 2019

\(a,\frac{1}{2}+\frac{2}{3}x=\frac{4}{5}\)

=> \(\frac{2}{3}x=\frac{4}{5}-\frac{1}{2}=\frac{3}{10}\)

=> \(x=\frac{3}{10}:\frac{2}{3}=\frac{9}{20}\)

Vậy \(x\in\left\{\frac{9}{20}\right\}\)

\(b,x+\frac{1}{4}=\frac{4}{3}\)

=> \(x=\frac{4}{3}-\frac{1}{4}=\frac{13}{12}\)

Vậy \(x\in\left\{\frac{13}{12}\right\}\)

\(c,\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\)

=> \(\frac{3}{5}x=-\frac{1}{7}+\frac{1}{2}=\frac{5}{14}\)

=> \(x=\frac{5}{14}:\frac{3}{5}=\frac{25}{42}\)

Vậy \(x\in\left\{\frac{25}{42}\right\}\)

\(d,\left|x+5\right|-6=9\)

=> \(\left|x+5\right|=9+6=15\)

=> \(\left[{}\begin{matrix}x+5=15\\x+5=-15\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=15-5=10\\x=-15-5=-20\end{matrix}\right.\)

Vậy \(x\in\left\{10;-20\right\}\)

\(e,\left|x-\frac{4}{5}\right|=\frac{3}{4}\)

=> \(\left[{}\begin{matrix}x-\frac{4}{5}=\frac{3}{4}\\x-\frac{4}{5}=-\frac{3}{4}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{3}{4}+\frac{4}{5}=\frac{31}{20}\\x=-\frac{3}{4}+\frac{4}{5}=\frac{1}{20}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{31}{20};\frac{1}{20}\right\}\)

\(f,\frac{1}{2}-\left|x\right|=\frac{1}{3}\)

=> \(\left|x\right|=\frac{1}{2}-\frac{1}{3}\)

=> \(\left|x\right|=\frac{1}{6}\)

=> \(\left[{}\begin{matrix}x=\frac{1}{6}\\x=-\frac{1}{6}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{1}{6};-\frac{1}{6}\right\}\)

\(g,x^2=16\)

=> \(\left|x\right|=\sqrt{16}=4\)

=> \(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

vậy \(x\in\left\{4;-4\right\}\)

\(h,\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)

=> \(x-\frac{1}{2}=\sqrt[3]{\frac{1}{27}}=\frac{1}{3}\)

=> \(x=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}\)

Vậy \(x\in\left\{\frac{5}{6}\right\}\)

\(i,3^3.x=3^6\)

\(x=3^6:3^3=3^3=27\)

Vậy \(x\in\left\{27\right\}\)

\(J,\frac{1,35}{0,2}=\frac{1,25}{x}\)

=> \(x=\frac{1,25.0,2}{1,35}=\frac{5}{27}\)

Vậy \(x\in\left\{\frac{5}{27}\right\}\)

\(k,1\frac{2}{3}:x=6:0,3\)

=> \(\frac{5}{3}:x=20\)

=> \(x=\frac{5}{3}:20=\frac{1}{12}\)

Vậy \(x\in\left\{\frac{1}{12}\right\}\)

6 tháng 8 2019

a,\(\frac{1}{x-1}+\frac{-2}{3}.\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x}\)

\(\Rightarrow\frac{1}{x-1}+\frac{-2}{3}.\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x};Đkxđ:x\ne1\)

\(\Rightarrow\frac{1}{x-1}+\frac{-2}{3}\left(\frac{-9}{20}\right)=\frac{5}{2-2x}\)

\(\Rightarrow\frac{1}{x-1}+\frac{3}{10}=\frac{5}{2-2x}\)

\(\Rightarrow\frac{1}{x-1}-\frac{5}{2-2x}=\frac{-3}{10}\)

\(\Rightarrow\frac{1}{x-1}-\frac{5}{-2\left(x-1\right)}=\frac{-3}{10}\)

\(\Rightarrow\frac{1}{x-1}+\frac{5}{2\left(x-1\right)}=\frac{3}{10}\)

\(\Rightarrow\frac{7}{2\left(x-1\right)}=\frac{-3}{10}\)

\(\Rightarrow70=-6\left(x-1\right)\)

\(\Rightarrow6x=6-70\)

\(\Rightarrow6x=-64\)

\(\Rightarrow x=\frac{-32}{3}x\ne1\)