\(\frac{x}{5}\)=\(\frac{y}{3}\)và x.y=60

(giúp...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

Vì \(\frac{x}{5}=\frac{y}{3}=>3x=5y\)

\(=>x=\frac{5}{3}y\)

Vì \(x.y=60\)

\(\Leftrightarrow\)\(\frac{5}{3}y.y=60\)

\(\Rightarrow\)\(y^2=60:\frac{5}{3}=36=>y=6\)

\(=>x=60:6=10\)

14 tháng 7 2016

dễ

\(\frac{x}{5}=\frac{y}{3}=\frac{x.y}{5.3}=\frac{60}{15}=4\)

\(\frac{x}{5}=4\Rightarrow x=20\)

\(\frac{y}{3}=4\Rightarrow y=12\)

31 tháng 7 2017

đặt \(\frac{x}{2}=\frac{y}{5}=k\)

\(\Rightarrow x=2k;y=5k\)

Mà xy = 10

=> 2k . 5k = 10

=> 10k2 = 10

=> k2 = 1

=> k = 1 hoặc k = -1

=>x  = 2 ; y = 5 hoặc x = -2 ; y = -5

31 tháng 7 2017

\(\frac{x}{2}=\frac{y}{5}\)và \(xy=10\)

đặt \(\frac{x}{2}=\frac{y}{5}=k\)

\(\Rightarrow x=2k;y=5k\)

\(\Rightarrow xy=2k\cdot5k=10\)

\(\Leftrightarrow10k^2=10\)

\(\Leftrightarrow k^2=1\Leftrightarrow k=\orbr{\begin{cases}1\\-1\end{cases}}\)

ta có:\(\hept{\begin{cases}x=1\cdot2=2\\y=1\cdot5=5\end{cases}}\)

hoặc \(\hept{\begin{cases}x=-1\cdot2=-2\\y=-1\cdot5=-5\end{cases}}\)

1 tháng 12 2016

Đặt \(\frac{x}{3}=\frac{y}{5}=k\)

Ta có: \(x=3k;y=5k\)

\(\Rightarrow xy=15k^2\)

\(\Rightarrow60=15k^2\)

\(\Rightarrow k^2=60:15=4\)

\(\Rightarrow k=2\)

\(\Rightarrow x=2.3=6\)

     \(y=2.5=10\)

Vậy x = 6 và y = 10

31 tháng 10 2017

x=6.

y=10.

6 tháng 8 2017

\(\frac{x}{y}=\frac{5}{7}=\frac{x}{7}=\frac{y}{5}\) và x + y = 4,08

Áp dụng tính chất dãy tỉ số bằng nhau,ta có: 

   \(\frac{x}{7}=\frac{y}{5}=\frac{x+y}{7+5}=\frac{4,08}{12}=\frac{17}{50}\)

\(\frac{x}{7}=\frac{17}{50}\Rightarrow x=\frac{17.7}{50}=\frac{119}{50}\)

\(\frac{y}{5}=\frac{17}{50}\Rightarrow y=\frac{17.5}{50}=\frac{17}{10}\)

Vậy..

Còn 2 cách kia là j??? 

6 tháng 8 2017

a, \(\frac{x}{y}=\frac{5}{7}\)và x+y=4,08

Ta có: 4,08=\(\frac{102}{25}\)

 \(\frac{x}{y}=\frac{5}{7}\Rightarrow7x=5y\)

\(\Rightarrow\frac{x}{5}=\frac{y}{7}\)và x+y=\(\frac{102}{25}\)

theo t/c dãy tỉ số bằng nhau ta có:

\(\frac{x}{5}=\frac{y}{7}=\frac{x+y}{5+7}=\frac{\frac{102}{25}}{12}=\frac{17}{50}\)

\(\Rightarrow\frac{x}{5}=\frac{17}{50}\Rightarrow x=\frac{17}{10}\)

\(\frac{y}{7}=\frac{17}{50}\Rightarrow y=\frac{119}{50}\)

vậy x=

      y=

29 tháng 7 2017

a)\(0,2:1\frac{1}{5}=\frac{2}{3}:\left(6.x+7\right)\)

\(\frac{2}{3}:\left(6.x+7\right)=0,2:1\frac{1}{5}\)

\(\frac{2}{3}:\left(6.x+7\right)=0,2:\frac{6}{5}\)

\(\frac{2}{3}:\left(6.x+7\right)=\frac{1}{6}\)

\(6.x+7=\frac{2}{3}:\frac{1}{6}\)

\(6.x+7=4\)

      \(6.x=4-7\)

       \(6.x=-3\)

           \(x=-3:6\)

            \(x=-0,5\)

  Vậy x=-0,5 hay \(\frac{-1}{2}\)

d)\(\frac{x}{y}=\frac{2}{3};x.y=96\)

Từ \(\frac{x}{y}=\frac{2}{3}\)suy ra \(\frac{x}{3}=\frac{y}{2}\)

 Đặt k=\(\frac{x}{3}=\frac{y}{2}\)

\(\Rightarrow x=3.k;y=2.k\)

\(x.y=96\)nên \(2k.3k=96\)

                                            \(\Rightarrow6.k^2=96\)

                                              \(\Rightarrow k^2=96:6\)

                                               \(\Rightarrow k^2=16\)

                                                 \(\Rightarrow k=4\)hoặc\(k=-4\)

+)Với \(k=4\)thì \(x=2\);\(y=3\)

+)Với \(k=-4\)thì \(x=-2\);\(y=-3\)

               Vậy \(x=2;y=3\)hoặc \(x=-2;y=-3\)

e) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)\(x.y.z=810\)

    Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(x.y.z=810\)nên \(2k.3k.5k=810\)

                                \(\Rightarrow30.k^3=810\)

                                 \(\Rightarrow k^3=810:30\)

                                  \(\Rightarrow k^3=27\)

                                   \(\Rightarrow k=3\)

Với \(k=3\)thì \(x=6\); \(y=9\); \(z=15\)

            Vậy \(x=6\); \(y=9\); \(z=15\)

Mk chỉ làm đc vậy thui bn à! Xin lỗi thật nhiều nha

29 tháng 7 2017

bài ở sách mô đây mi

5 tháng 7 2019

a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)

=> \(\hept{\begin{cases}\frac{x}{2}=9\\\frac{y}{4}=9\\\frac{z}{-4}=9\end{cases}}\)  =>   \(\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)

Vậy ...

a, ÁP DỤNG DÃY TỈ SỐ BĂNG NHAU TA CÓ

\(\frac{x}{2}=\frac{y}{3}=\frac{x}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)

\(\Rightarrow\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)

1 tháng 7 2018

Ta có : 

\(xy.yz.zx=\frac{1}{3}.\frac{-2}{5}.\frac{-3}{10}\)

\(\Leftrightarrow\)\(x^2y^2z^2=\frac{3}{75}\)

\(\Leftrightarrow\)\(x^2y^2z^2=\frac{9}{225}\)

\(\Leftrightarrow\)\(\left(xyz\right)^2=\left(\frac{3}{15}\right)^2\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}xyz=\frac{3}{15}\\xyz=\frac{-3}{15}\end{cases}}\)

* Nếu \(xyz=\frac{3}{15}\)

\(\Rightarrow\)\(\hept{\begin{cases}x=\frac{xyz}{yz}=\frac{\frac{3}{5}}{\frac{-2}{5}}=\frac{3}{5}.\frac{-5}{2}=\frac{-3}{2}\\y=\frac{xyz}{zx}=\frac{\frac{3}{5}}{\frac{-3}{10}}=\frac{3}{5}.\frac{-10}{3}=-2\\z=\frac{xyz}{xy}=\frac{\frac{3}{5}}{\frac{1}{3}}=\frac{3}{5}.3=\frac{9}{5}\end{cases}}\)

Vậy \(x=\frac{-3}{2}\)\(;\)\(y=-2\) và \(z=\frac{9}{5}\)

Chúc bạn học tốt ~ 

1 tháng 7 2018

Bạn êi tại olm bị lỗi chỗ \(\hept{\begin{cases}\\\\\end{cases}}\) nên mình trình bày lại nhá bạn 

\(x=\frac{xyz}{yz}=\frac{\frac{3}{5}}{\frac{-2}{5}}=\frac{3}{5}.\frac{-5}{2}=\frac{-3}{2}\)

\(y=\frac{xyz}{zx}=\frac{\frac{3}{5}}{\frac{-3}{10}}=\frac{3}{5}.\frac{-10}{3}=-2\)

\(z=\frac{xyz}{xy}=\frac{\frac{3}{5}}{\frac{1}{3}}=\frac{3}{5}.3=\frac{9}{5}\)

Vậy ... 

Chúc bạn học tốt ~ 

16 tháng 7 2016

Do x/2 = y/3 => 3x = 2y

=> x = 2/3y

Ta có: x.y = 54

=> 2/3y.y = 54

=> y2 = 54 : 2/3

=> y2 = 54 . 3/2

=> y2 = 81

=> y thuộc {9 ; -9}

+ Với y = 9 => x = 2/3.9 = 6

+ Với y = -9 => x = 2/3.(-9) = -6

Vậy x = 6; y = 9 hoặc x = -6; y = -9

16 tháng 7 2016

Ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{x.y}{2.3}=\frac{54}{6}=9\)

\(\Rightarrow\frac{x}{2}=9\Rightarrow x=18\)

\(\Rightarrow\frac{x}{3}=9\Rightarrow x=27\)

16 tháng 7 2018

a) theo tinh chat day ti so ta co : x/3=y/8 va x.y= 48                                                                                                                                             => x.y/3.4 =48/12= a                                                                                                                                                                                           => x/3 =4 =>x=3.4= 12                                                                                                                                                                                         => y/4 =4 => y = 4.4 = 16                                                                                                  

16 tháng 7 2018

b/ (x—1/2)2=4/25

(x—12)2=22/52

(x—1/2)2=(2/5)2

==> x—1/2=2/5 hoặc x—1/2=—2/5

==> x=2/5+1/2 hoặc x= —2/5+1/2

==> x= 4/10+5/10 hoặc x= —4/10+5/10

==> x= 9/10 hoặc x= 1/10

12 tháng 9 2020

a) \(\frac{2}{x-3}=\frac{5}{4}\)(ĐKXĐ : x khác 3)

=> \(2\cdot4=5\left(x-3\right)\)

=> \(8=5x-15\)

=> \(5x-15=8\)

=> \(5x=23\)=> x = 23/5 (tm)

b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)

=> 3(x + 1) = 5(4x - 2)

=> 3x + 3 = 20x - 10

=> 3x + 3 - 20x + 10 = 0

=> 3x - 20x + 3 + 10 = 0

=> 3x - 20x = -13

=> -17x = -13

=> x = 13/17(tm)

2. a) Nếu đề như thế này : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và x - 2y + 2z = 10

=> \(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)

=> x = 5/3.2 = 10/3 , y = 5/3.3 = 5, z = 5/3.5 = 25/3 ( nên sửa lại đề bài này nhá)

b) Bạn tự làm

c) \(\frac{x}{y}=\frac{3}{5}\)=> \(\frac{x}{3}=\frac{y}{5}\)=> \(\frac{2x}{6}=\frac{3y}{15}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có : 

\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-11}=-\frac{12}{11}\)

=> \(x=-\frac{12}{11}\cdot3=-\frac{36}{11},y=-\frac{12}{11}\cdot5=-\frac{60}{11}\)

d) Đặt x/3 = y/4 = k

=> x = 3k, y = 4k

Theo đề bài ta có => xy = 3k.4k = 12k2

=> 48 = 12k2

=> k2  = 48 : 12 = 4

=> k = 2 hoặc k = -2

Với k = 2 thì x = 3.2 = 6 , y = 4.2 = 8

Với k = -2 thì x = 3(-2) = -6 , y = 4(-2) = -8

12 tháng 9 2020

Bài 1.

a) \(\frac{2}{x-3}=\frac{5}{4}\)( ĐK : x khác 3 )

<=> 2.4 = ( x - 3 ).5

<=> 8 = 5x - 15

<=> 8 + 15 = 5x

<=> 23 = 5x

<=> 23/5 = x ( tmđk )

b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)

<=> ( x + 1 ).3 = 5( 4x - 2 )

<=> 3x + 3 = 20x - 10

<=> 3x - 20x = -10 - 3

<=> -17x = -13

<=> x = 13/17

Bài 2.

a) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\\x-2y+2z=10\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\\x-2y+2z=10\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\cdot2=\frac{10}{3}\\y=\frac{5}{3}\cdot3=5\\z=\frac{5}{3}\cdot5=\frac{25}{3}\end{cases}}\)

b) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\\frac{z}{4}=\frac{y}{6}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}\times\frac{1}{6}=\frac{y}{5}\times\frac{1}{6}\\\frac{z}{4}\times\frac{1}{5}=\frac{y}{6}\times\frac{1}{5}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}\\\frac{z}{20}=\frac{y}{30}\\x-y+z=20\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}=\frac{z}{20}\\x-y+z=20\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{12}=\frac{y}{30}=\frac{z}{20}=\frac{x-y+z}{12-30+20}=\frac{20}{2}=10\)

\(\Rightarrow\hept{\begin{cases}x=10\cdot12=120\\y=10\cdot30=300\\z=10\cdot20=200\end{cases}}\)

c) \(\hept{\begin{cases}\frac{x}{y}=\frac{3}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{2x}{6}=\frac{3y}{15}\\2x-3y=12\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-9}=-\frac{4}{3}\)

\(\Rightarrow\hept{\begin{cases}x=-\frac{4}{3}\cdot3=-4\\y=-\frac{4}{3}\cdot5=-\frac{20}{3}\end{cases}}\)

d) Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)

xy = 48

<=> 3k.4k= 48

<=> 12k2 = 48

<=> k2 = 4

<=> k = ±2

+) Với k = 2 => \(\hept{\begin{cases}x=3\cdot2=6\\y=4\cdot2=8\end{cases}}\)

+) Với k = -2 => \(\hept{\begin{cases}x=3\cdot\left(-2\right)=-6\\y=4\cdot\left(-2\right)=-8\end{cases}}\)