\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{1}{x.\left(x+1\right):2}=\frac{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2019

Câu 1:

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x.\left(x+1\right):2}=\frac{1991}{1993}.\)

\(\frac{1}{2.3:2}+\frac{1}{3.4:2}+\frac{1}{4.5:2}+...+\frac{1}{x.\left(x+1\right):2}=\frac{1991}{1993}\)

\(\frac{1}{2.3}.2+\frac{1}{3.4}.2+\frac{1}{4.5}.2+...+\frac{1}{x.\left(x+1\right)}.2=\frac{1991}{1993}\)

\(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{1991}{1993}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1991}{3986}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{1991}{3986}\)

...

e tự tính nốt nha

19 tháng 3 2019

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}=\frac{1991}{1993}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{1991}{1993}\)

\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1991}{1993}\div2\)

\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{1991}{3986}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1991}{3986}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1991}{3986}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{1991}{3986}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{1993}\)

\(\Leftrightarrow x+1=1993\)

\(\Leftrightarrow x=1993-1\)

\(\Leftrightarrow x=1992\)

Vậy x = 1992

22 tháng 4 2017

\(1.\)\(M=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{42}\)

\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}\)

\(M=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{6}-\frac{1}{7}\)

\(M=1-\frac{1}{7}=\frac{6}{7}\)

Mình làm câu 1 thoi nha!

22 tháng 4 2017

1.

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)

=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)

=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\)

=\(1-\frac{1}{7}\)

=\(\frac{6}{7}\)

13 tháng 7 2017

\(1+\frac{1}{3}+\frac{1}{6}+....+\frac{2}{x\left(x+1\right)}=4\)

\(\Leftrightarrow1+\frac{2}{6}+\frac{2}{12}+....+\frac{2}{x\left(x+1\right)}=4\)

\(\Leftrightarrow1+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{x\left(x+1\right)}=4\)

\(\Leftrightarrow1+\left[2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{\left(x+1\right)}\right)\right]=4\)

\(\Leftrightarrow1+2\left(\frac{1}{2}-\frac{1}{\left(x+1\right)}\right)=4\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{\left(x+1\right)}=\frac{4-1}{2}=\frac{3}{2}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)}=\frac{1}{2}-\frac{3}{2}=-1\)

\(\Leftrightarrow x=-1+1=-2\)

Vậy x = -2 

16 tháng 7 2017

\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{2.6}+\frac{2}{2.10}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)

\(\Leftrightarrow\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)

\(\Leftrightarrow\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)

\(\Leftrightarrow2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{\left(x+1\right)}\right)=1\frac{1991}{1993}\)

\(\Leftrightarrow2\left(1-\frac{1}{\left(x+1\right)}\right)=1\frac{1991}{1993}\)

\(\Leftrightarrow1-\frac{1}{\left(x+1\right)}=1\frac{1991}{1993}\div2\)

\(\Leftrightarrow1-\frac{1}{\left(x+1\right)}=\frac{1992}{1993}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)}=1-\frac{1992}{1993}=\frac{1}{1993}\)

\(\Leftrightarrow x+1=1993\)

\(\Leftrightarrow x=1992\)

25 tháng 2 2019

a)Ta có   \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)

=)\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)

=)\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)

Suy ra \(\frac{1}{5}-\frac{1}{x+3}\)\(\frac{303}{1540}\)=)\(\frac{1}{x+3}=\frac{1}{305}\)=)   \(x+3=305\)=) \(x=302\)

26 tháng 6 2017

\(\frac{3}{2}x-\frac{2}{3}=\frac{2}{3}:\frac{3}{2}\)

\(\frac{3}{2}x-\frac{2}{3}=\frac{4}{9}\)

\(\frac{3}{2}x=\frac{4}{9}+\frac{2}{3}\)

\(\frac{3}{2}x=\frac{10}{9}\)

\(x=\frac{10}{9}:\frac{3}{2}\)

\(x=\frac{20}{27}\)

Vậy x=\(\frac{20}{27}\)

\(\left(\frac{9}{11}-x\right):\frac{-10}{11}=1-\frac{4}{5}\)

\(\left(\frac{9}{11}-x\right):\frac{-10}{11}=\frac{1}{5}\)

\(\frac{9}{11}-x=\frac{1}{5}\cdot\frac{-10}{11}\)

\(\frac{9}{11}-x=\frac{-2}{11}\)

\(x=\frac{9}{11}-\frac{-2}{11}\)

\(x=1\)

Vậy x=1

\(\frac{-11}{12}\cdot x+\frac{3}{4}=\frac{-1}{6}\)

\(\frac{-11}{12}\cdot x=\frac{-1}{6}-\frac{3}{4}\)

\(\frac{-11}{12}\cdot x=\frac{21}{12}\)

\(x=\frac{-21}{11}\)

Vậy x=\(\frac{-21}{11}\)

\(\frac{-5}{4}-\left(1\frac{1}{2}+x\right)=4,5\)

\(\frac{3}{2}+x=\frac{-5}{4}-\frac{9}{2}\)

\(\frac{3}{2}+x=\frac{23}{4}\)

\(x=\frac{17}{4}\)

Vậy x=\(\frac{17}{4}\)

\(\left(\frac{3}{4}-x:\frac{2}{15}\right)\cdot\frac{1}{5}=-2,6\)

\(\frac{3}{4}-x:\frac{2}{15}=\frac{-13}{5}:\frac{1}{5}\)

\(\frac{3}{4}-x:\frac{2}{15}=-13\)

\(x:\frac{2}{15}=\frac{3}{4}-\left(-13\right)\)

\(x:\frac{2}{15}=\frac{45}{4}\)

\(x=\frac{3}{2}\)

Vậy x=\(\frac{3}{2}\)

\(3-\left(\frac{1}{6}-x\right)\cdot\frac{2}{3}=\frac{2}{3}\)

\(3-\left(\frac{1}{6}-x\right)=\frac{2}{3}:\frac{2}{3}\)

\(3-\left(\frac{1}{6}-x\right)=1\)

\(\frac{1}{6}-x=2\)

\(x=\frac{1}{6}-2\)

\(x=\frac{-11}{6}\)

Vậy x=\(\frac{-11}{6}\)

\(\left(1-2x\right)\cdot\frac{4}{5}=\left(-2\right)^3\)

\(1-2x=\frac{-1}{10}\)

\(2x=1-\frac{-1}{10}\)

\(2x=\frac{11}{10}\)

\(x=\frac{11}{20}\)

Vậy x=\(\frac{11}{20}\)

\(\frac{1}{6}-\left|\frac{1}{2}\cdot x-\frac{1}{3}\right|=\frac{1}{8}\)

\(\left|\frac{1}{2}\cdot x-\frac{1}{3}\right|=\frac{7}{12}\)

\(\Rightarrow\frac{1}{2}x-\frac{1}{3}=\frac{7}{12}\)                                                         \(\frac{1}{2}x-\frac{1}{3}=\frac{-7}{12}\)

\(\frac{1}{2}x=\frac{11}{12}\)                                                                        \(\frac{1}{2}x=\frac{-1}{4}\)

\(x=\frac{11}{6}\)                                                                              \(x=\frac{-1}{2}\)

Vậy \(x\in\left\{\frac{11}{6};\frac{-1}{2}\right\}\)

26 tháng 6 2017

\(\frac{3}{2}x-\frac{2}{3}=\frac{2}{3}:\frac{3}{2}\)

\(\frac{3}{2}x=\frac{4}{9}+\frac{6}{9}\)

\(\frac{3}{2}x=\frac{10}{9}\)

\(x=\frac{10}{9}:\frac{3}{2}\)

\(x=\frac{20}{27}\)

tk mình đi mình làm nốt cho hjhj ^^

21 tháng 7 2019

Bài 1:

1) \(\frac{11}{3}\): 3\(\frac{1}{3}\)- 3

\(\frac{11}{3}\)\(\frac{10}{3}\)- 3

\(\frac{11}{3}\)\(\frac{3}{10}\)- 3 

\(\frac{11}{10}\)- 3

\(\frac{-19}{10}\)

2) \(\frac{5}{6}\):  \(\frac{3}{52}\) - \(\frac{5}{6}\). 47\(\frac{1}{3}\)

\(\frac{5}{6}\) . \(\frac{52}{3}\)\(\frac{5}{6}\). 47\(\frac{1}{3}\)

\(\frac{5}{6}\).(\(\frac{52}{3}\)- 47\(\frac{1}{3}\))

\(\frac{5}{6}\).( -30)

= -25

21 tháng 7 2019

mách mình mấy câu kia với

22 tháng 8 2019

1,\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{3}{7}.\left(7-\frac{1}{6}\right)+\frac{1}{3}\)

  \(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{3}{7}.\frac{41}{6}+\frac{1}{3}\)

\(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{41}{14}+\frac{1}{3}\)

 \(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{137}{42}\)

\(\frac{2}{9}.\left(x-\frac{9}{4}\right)=\frac{137}{42}-\frac{1}{2}\)

\(\frac{2}{9}.\left(x-\frac{9}{4}\right)=\frac{58}{21}\)

 \(\left(x-\frac{9}{4}\right)=\frac{5}{2}:\frac{2}{9}\)

\(\left(x-\frac{9}{4}\right)=\frac{45}{4}\)

\(x=\frac{45}{4}+\frac{9}{4}\)

\(x=\frac{27}{2}\)

22 tháng 8 2019

Bước cưối 58/21 minh man viết nhầm nên sai