Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk làm câu c cho nó dễ
c)1/1.2+1/2.3+...+1/x.(x+1)=2009/2010
=1-1/2+1/2-1/3+...+1/x-1/x+1=2009/2010
=1-1/x+1=2009/2010
=1/x+1=1-2009/2010
=1/x+1=1/2010
=) x+1=2010
x =2010-1
x =2009
=\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+......+\frac{2}{x\left(x+1\right)}\)
=\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{x\left(x+1\right)}\right)\)
=\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)\)
=\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)\)
\(\frac{1}{2}-\frac{1}{x+1}\)=\(\frac{2011}{4026}\)
bạn tính tiếp đi, mình bận rồi nhé, mình gợi ý hết cho bạn rồi, tự làm tiếp nhé bạn, bye
a) Đặt \(A=\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+.....+\frac{1}{\left(x-2\right)x}+\frac{1}{x\left(x+2\right)}\)
=> \(3A=\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+.....+\frac{3}{\left(x-2\right)x}+\frac{3}{x\left(x+2\right)}\)
=> \(3A=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+....+\frac{1}{\left(x-2\right)}-\frac{1}{x}+\frac{1}{x}-\frac{1}{x+2}\)
=> 3A = \(\frac{1}{5}-\frac{1}{x+2}\)
=> A = \(\frac{1}{15}-\frac{1}{3x+6}\)
Mà : A = \(\frac{101}{1540}\)
=> \(\frac{1}{15}-\frac{1}{3x+6}=\frac{101}{1540}\)
=> \(\frac{1}{3x+6}=\frac{1}{15}-\frac{101}{1540}=\frac{1}{924}\)
=> 3x + 6 = 924
=> 3(x + 2) = 924
=> x + 2 = 308
=> x = 306
a) Ta có: \({{1} \over x(x+2)}= {{1} \over 3}({{1} \over x}-{{1} \over x+2})\) \(\Rightarrow\) \({{1} \over 3}({{1} \over 5}-{{1} \over 8}+{{1} \over 8}-...+{{1} \over x}-{{1} \over x+2})={{101} \over 1540} \)\(\Leftrightarrow\) \({{1} \over 3}({{1} \over 5}-{{1} \over x+2})={{101} \over 1540}\)\(\Leftrightarrow\)x+2 = 308 \(\Leftrightarrow\) x=306 Lúc sau lm hơi tắt mọi người thông cảm
a) \(1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}..1\frac{1}{99}=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}....\frac{100}{99}=\frac{2.2.3.3.4.4...10.10}{1.3.2.4.3.5...9.11}=\frac{\left(2.3.4...10\right)\left(2.3.4...10\right)}{\left(1.2.3...9\right)\left(3.4.5...11\right)}\)
\(\frac{10.2}{1.11}=\frac{20}{11}\)
b) \(\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right).\left(1-\frac{1}{25}\right).\left(1-\frac{1}{36}\right)=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.\frac{24}{25}.\frac{35}{36}\)
\(=\frac{1.3.2.4.3.5.4.6.5.7}{2.2.3.3.4.4.5.5.6.6}=\frac{\left(1.2.3.4.5\right).\left(3.4.5.6.7\right)}{\left(2.3.4.5.6\right).\left(2.3.4.5.6\right)}=\frac{1.7}{6.2}=\frac{7}{12}\)
c) \(\frac{99}{98}-\frac{98}{97}+\frac{1}{97.98}=\frac{99}{98}-\frac{98}{97}+\frac{1}{97}-\frac{1}{98}=\left(\frac{99}{98}-\frac{1}{98}\right)+\left(-\frac{98}{97}+\frac{1}{97}\right)=1-1=0\)
d) \(3\frac{1}{11}.\frac{27}{36}.1\frac{6}{7}.2\frac{4}{9}=\frac{34}{11}.\frac{3}{4}.\frac{13}{7}.\frac{22}{9}=\frac{34.3.13.22}{11.4.7.9}=\frac{34.13}{11.2.7.3}=\frac{442}{462}=\frac{221}{231}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{\left[x\left(x+1\right)\right]:2}=\frac{1999}{2001}\)
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)
\(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)
\(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{1999}{2001}\)
\(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{1999}{2001}\)
\(2.\frac{1}{2}-2.\frac{1}{x+1}=\frac{1999}{2001}\)
\(1-\frac{2}{x+1}=\frac{1999}{2001}\)
\(\frac{2}{x+1}=1-\frac{1999}{2001}\)
\(\frac{2}{x+1}=\frac{2}{2001}\)
=> x + 1 = 2001
=> x = 2001 - 1
=> x = 2000
Vậy x = 2000
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{\left[x\left(x+1\right)\right]:2}=\frac{1999}{2001}\)
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)
\(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)\(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{1999}{2001}\)
\(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{1999}{2001}\)
\(2.\frac{1}{2}-2.\frac{1}{x+1}=\frac{1999}{2001}\)
\(1-\frac{2}{x+1}=\frac{1999}{2001}\)
\(\frac{2}{x+1}=1-\frac{1999}{2001}\)
\(\frac{2}{x+1}=\frac{2}{2001}\)
=> x + 1 = 2001
=> x = 2001 - 1
=> x = 2000
Vậy x = 2000
\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+......+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)(hình như bn ghi sai đề phải là 2011/2013)
\(\Rightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+.........+\frac{2}{x\times\left(x+1\right)}=\frac{2011}{2013}\)
\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.........+\frac{1}{x\times\left(x+1\right)}\right)=\frac{2011}{2013}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{2013}:2\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}=\frac{1}{2013}\)
\(\Rightarrow x+1=2013;x=2012\)
thank you