Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có : \(\frac{x}{y}=\frac{6}{5}\) => \(\frac{x}{6}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{5}=\frac{x+y}{6+5}=\frac{121}{11}=11\)
=> x = 11.6 = 66,y = 11.5 = 55
b) 4x = 5y => \(\frac{x}{5}=\frac{y}{4}\)=> \(\frac{2x}{10}=\frac{5y}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{10}=\frac{5y}{20}=\frac{2x-5y}{10-20}=\frac{40}{-10}=-4\)
=> x = (-4).5 = -20 , y = (-4).4 = -16
c) Đặt \(\frac{x}{3}=\frac{y}{16}=t\Rightarrow\hept{\begin{cases}x=3t\\y=16t\end{cases}}\)
=> xy = 3t.16t = 48t2
=> 48t2 = 192
=> t2 = 4
=> t = \(\pm\)2
Với t = 2 thì x = 3.2 = 6,y = 16.2 = 32
Với t = -2 thì x = -6,y = -32
d) \(\frac{x}{-3}=\frac{y}{7}\)
=> \(\frac{x^2}{9}=\frac{y^2}{49}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{9}=\frac{y^2}{49}=\frac{x^2-y^2}{9-49}=\frac{-360}{-40}=9\)
=> x2 = 9.9 = 81 => x = \(\pm\)9
y2 = 9.49 = 441 => y = \(\pm\)21
Câu e,f tương tự
Tìm x,y,z biết x+y= \(\frac{1}{2}\); y+z =\(\frac{1}{3}\);x+z=\(\frac{1}{4}\)
chỉ mik với mik cần gấp

Ta có: \(x+y=\frac{1}{2}\) (1)
\(y+z=\frac{1}{3}\)(2)
\(x+z=\frac{1}{4}\)(3)
Từ (1), (2) và (3) cộng vế theo vế:
\(x+y+y+z+x+z=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)
<=> \(2\left(x+y+z\right)=\frac{13}{12}\)
<=> \(x+y+z=\frac{13}{24}\)
=> \(\hept{\begin{cases}x=\frac{13}{24}-\left(y+z\right)=\frac{13}{24}-\frac{1}{3}=\frac{5}{24}\\y=\frac{13}{24}-\left(x+z\right)=\frac{13}{24}-\frac{1}{4}=\frac{7}{24}\\z=\frac{13}{24}-\left(x+y\right)=\frac{13}{24}-\frac{1}{2}=\frac{1}{24}\end{cases}}\)
\(\hept{\begin{cases}x+y=\frac{1}{2}\\y+z=\frac{1}{3}\\z+x=\frac{1}{4}\end{cases}}\Rightarrow2\left(x+y+z\right)=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)
\(\Leftrightarrow x+y+z=\frac{13}{24}\)
\(x=\frac{13}{24}-\frac{1}{3}=\frac{5}{24}\)
\(y=\frac{13}{24}-\frac{1}{4}=\frac{7}{24}\)
\(z=\frac{13}{24}-\frac{1}{2}=\frac{1}{24}\)

1) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{12x-15y}{7}=\frac{20y-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)
\(\Rightarrow\hept{\begin{cases}12x-15y=0\\15y-20z=0\end{cases}\Rightarrow}\hept{\begin{cases}12x=15y\\15y=20z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{y}{12}\\\frac{y}{20}=\frac{z}{15}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{75}=\frac{y}{60}\\\frac{y}{60}=\frac{z}{45}\end{cases}\Rightarrow}\frac{x}{75}=\frac{y}{60}=\frac{z}{45}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)
=> x = 75.4 : 15 = 20 ;
y = 60.4 : 15 = 16 ;
z = 45.4 : 15 = 12
Vậy x = 20 ; y = 16 ; z = 12
2) Từ đẳng thức \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\Rightarrow\frac{z}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)
\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{t+x+y}=\frac{x+y+z+t}{x+y+z}\)
Nếu x + y + z + t = 0
=> x + y = - (z + t)
=> y + z = - (t + x)
=> z + t = - (x + y)
=> t + x = - (z + y)
Khi đó :
P = \(\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(z+y\right)}{z+y}=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
=> P = 4
Nếu x + y + z + t khác 0
=> \(\frac{1}{y+z+t}=\frac{1}{z+t+x}=\frac{1}{t+x+y}=\frac{1}{x+y+z}\)
=> y + z + t = z + t + x = t + x + y = x + y + z
=> x =y = z = t
Khi đó : P = 1 + 1 + 1 + 1 = 4
Vậy nếu x + y + z + t = 0 thì P = - 4
nếu x + y + z + t khác 0 thì P = 4

a) Áp dụng tính chất ..., ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{2+6-4}=\frac{8}{4}=2\)
\(\Rightarrow x=4;y=6;z=8\)
b)2x = 4y \(\Rightarrow\frac{x}{4}=\frac{y}{2}\)\(\Rightarrow\frac{x}{20}=\frac{y}{10}\)( 1 )
4y =5z \(\Rightarrow\frac{y}{5}=\frac{z}{4}\)\(\Rightarrow\frac{y}{10}=\frac{z}{8}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{z}{8}\)
Áp dụng tính chất ..., ta có :
\(\frac{x}{20}=\frac{y}{10}=\frac{z}{8}=\frac{x-y+2z}{20-10+16}=\frac{40}{26}=\frac{20}{13}\)
\(\Rightarrow x=\frac{400}{13};y=\frac{200}{13};z=\frac{160}{13}\)
còn lại tương tự

Lời giải:
Đặt $\frac{2}{3}x=\frac{3}{4}y=\frac{5}{6}z=t$
$\Rightarrow x=\frac{3}{2}t; y=\frac{4}{3}t; z=\frac{6}{5}t$
Khi đó:
$x^2+y^2+z^2=724$
$\Leftrightarrow (\frac{3}{2}t)^2+(\frac{4}{3}t)^2+(\frac{6}{5}t)^2=724$
$\Leftrightarrow \frac{4921}{900}t^2=724\Rightarrow t^2=\frac{724.900}{4921}$
$\Rightarrow t=\pm 30\sqrt{\frac{724}{4921}}$
$\Rightarrow (x,y,z)=(\pm 45\sqrt{\frac{724}{4921}}, \pm 40\sqrt{\frac{724}{4921}}, \pm 36\sqrt{\frac{724}{4921}}\right)$
Bài này số xấu quá bạn nội tính toán đã đủ mệt mỏi!!!

áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x+y/9=y+z/12=z+x/13=2x+2y+2z/9+12+13=2(x+y+z)/34=2.51/34=102/34=3
suy ra: x+y=27; y+z=36: z+x=39
ta có: x+y+z=51
suy ra:
x=51-(y+z)=51-36=15
y=51-(z+x)=51-39=12
z=51-(x+y)51-27=24
Đỗ Văn Dương Nhơng x<y mà bạn , mik cũng tham khảo mấy bài trc ròi, mik ko hiểu tại sao lại nhơ thế ,x<y mà
Để x2 - 8 / x - 1 thuộc Z thì x2 - 8 chia hết cho x - 1
=> x2 - x + x - 1 - 7 chia hết cho x - 1
=> x . (x - 1) + (x - 1) - 7 chia hết cho x - 1
=> (x - 1) . (x + 1) - 7 chia hết cho x - 1
Vì (x - 1) . (x + 1) chia hết cho x - 1 nên 7 chia hết cho x - 1
Do x thuộc Z nên x - 1 thuộc Z => x - 1 thuộc { 1 ; -1 ; 7 ; -7}
=> x thuộc { 2 ; 0 ; 8 ; -6}
Vậy x thuộc [ 2 ; 0 ; 8 ; -6}
Để x2 - 8 / x - 1 thuộc Z thì x2 - 8 chia hết cho x - 1
=> x2 - x + x - 1 - 7 chia hết cho x - 1
=> x . (x - 1) + (x - 1) - 7 chia hết cho x - 1
=> (x - 1) . (x + 1) - 7 chia hết cho x - 1
Vì (x - 1) . (x + 1) chia hết cho x - 1 nên 7 chia hết cho x - 1
Do x thuộc Z nên x - 1 thuộc Z => x - 1 thuộc { 1 ; -1 ; 7 ; -7}
=> x thuộc { 2 ; 0 ; 8 ; -6}
Vậy x thuộc [ 2 ; 0 ; 8 ; -6}