K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017


16 \(⋮\)x\(\Rightarrow\)x\(\in\)ƯC(16) = { 1 ; 2 ; 4 ; 8 ; 16 }
 

1 tháng 10 2017

X = (2;4;8;16;1)

2 tháng 11 2016

a) 4 chia hết cho x

=> x \(\in\) Ư(4) = {1;-1;2;-2;4;-4}

Vậy x \(\in\) {1;-1;2;-2;4;-4}

b) 6 chia hết x+1

=> x+1 \(\in\) Ư(6) = {-1;1;2;-2;3;-3;6;-6}

Vậy x \(\in\) {-2;0;1;-3;2;-4;5;-7}

c) 12 chia hết cho x và 16 chia hết cho x

=> x \(\in\) ƯC(12;16) = {1;2;4}

Vậy x \(\in\) {1;2;4}

d) x chia hết cho 6 và x chia hết cho 4

=> x \(\in\) BC(6;4) = {0;12;24;48;...}

Mà 12<x<40 => x = 24

e) x+5 chia hết cho x+1

=> x+1+4 chia hết cho x+1

=> 4 chia hết cho x+1

=> x+1 \(\in\) Ư(4) = {1;-1;2;-2;4;-4}

Vậy x \(\in\) {0;-2;1;-3;3;-5}

2 tháng 11 2016

b) \(6⋮x+1\)

\(\Rightarrow x+1\inƯ\left(6\right)\)

hay \(x+1\in\left\{1,2,3,6\right\}\)

Vậy \(x\in\left\{0,1,2,5\right\}\)

 

AH
Akai Haruma
Giáo viên
29 tháng 6 2024

1/ Đề là $11y$ hay $11^y$ vậy bạn? Bạn xem lại đề.

AH
Akai Haruma
Giáo viên
29 tháng 6 2024

2/

$n\vdots 65, n\vdots 125$
$\Rightarrow n=BC(65,125)$

$\Rightarrow n\vdots BCNN(65,125)$

$\Rightarrow n\vdots 1625$

$\Rightarrow n=1625k$ với $k$ tự nhiên.

$n=1625k=5^3.13.k$

Nếu $k=1$ thì $n$ có $(3+1)(1+1)=8$ ước (loại) 

Nếu $k>1$ thì $n$ có ít nhất $(3+1)(1+1)(1+1)=16$ ước nguyên tố.

$n$ có đúng 16 ước nguyên tố khi mà $k$ là 1 số nguyên tố.

Vậy $n=1625p$ với $p$ là số nguyên tố. 

Ta có:

101234=100000....0000101234=100000....0000 (có 1234 số 0)

⇒101234+2=10000...00002⇒101234+2=10000...00002 (có 1233 số 0)

mà 1+0+0+...+0+0+0+2=31+0+0+...+0+0+0+2=3

⇒101234+2⋮3⇒101234+2⋮3 (đpcm)

a, 9.27≤3x≤7299.27≤3x≤729

⇒32.33≤3x≤36⇒32.33≤3x≤36

⇒35≤3x≤36⇒35≤3x≤36

Vì 3≠−1;3≠0;3≠13≠−1;3≠0;3≠1 nên 5≤x≤65≤x≤6

⇒x∈{5;6}⇒x∈{5;6}

b, (x−4)x+1=(x−4)x(x−4)x+1=(x−4)x

+, Xét trường hợp: x−4=−1;x−4=0;x−4=1x−4=−1;x−4=0;x−4=1 thì x∈Rx∈R thoả mãn yêu cầu đề bài.

+, Xét trường hợp:x−4≠−1;x−4≠0;x−4≠1x−4≠−1;x−4≠0;x−4≠1 thì

x+1=x⇒x−x=−1⇒0x=−1x+1=x⇒x−x=−1⇒0x=−1

⇒x∈∅⇒x∈∅

Vậy......

c, x.(x3)2=x5x.(x3)2=x5

⇒x.x6=x5⇒x.x6=x5

⇒x7=x5⇒x7=x5

Vì 7≠57≠5 mà x7=x5x7=x5 nên x∈{−1;0;1}x∈{−1;0;1}

Vậy.....

d, x3+3x=0x3+3x=0

⇒x.(x+3)=0⇒x.(x+3)=0

⇒{x=0x+3=0⇒{x=0x=−3