Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 2x+3>=1
=>2x>=-2
hay x>=-1
b: -3x+4<=5
=>-3x<=1
hay x>=-1/3
c: 3x+5<4-2x
=>5x<-1
hay x<-1/5
d: 1/2x+7>-5/2
=>1/2x>-19/2
hay x>-19
a)Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)\(\Leftrightarrow\frac{bk-b}{b}=\frac{dk-d}{d}\)
Xét VT \(\frac{bk-b}{b}=\frac{b\left(k-1\right)}{b}=k-1\left(1\right)\)
Xét VP \(\frac{dk-d}{d}=\frac{d\left(k-1\right)}{d}=k-1\left(2\right)\)
Từ (1) và (2) =>Đpcm
b)Đặt tương tự ta xét VT:
\(\frac{11bk+3b}{11dk+3d}=\frac{b\left(11k+3\right)}{d\left(11k+3\right)}=\frac{b}{d}\left(1\right)\)
Xét VP \(\frac{3bk-11b}{3dk-11d}=\frac{b\left(3k-11\right)}{d\left(3k-11\right)}=\frac{b}{d}\left(2\right)\)
Từ (1) và (2) =>Đpcm
c)Cũng đặt tương tự
Xét VT \(\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(1\right)\)
Xét VP \(\frac{bk\cdot dk}{b\cdot d}=\frac{b\cdot d\cdot k^2}{b\cdot d}=k^2\left(2\right)\)
Từ (1) và (2) =>Đpcm
d)Đặt cũng như vậy
Xét VT \(\frac{4\left(bk\right)^4+5b^4}{4\left(dk\right)^4+5d^4}=\frac{4b^4k^4+5b^4}{4d^4k^4+5d^4}=\frac{b^4\left(4k^4+5\right)}{d^4\left(4k+5\right)}=\frac{b^4}{d^4}\left(1\right)\)
Xét VP \(\frac{\left(bk\right)^2b^2}{\left(dk\right)^2d^2}=\frac{b^2k^2b^2}{d^2k^2d^2}=\frac{k^2b^4}{k^2d^4}=\frac{b^4}{d^4}\left(2\right)\)
Từ (1) và (2) =>Đpcm
a) \(\frac{a-b}{b}=\frac{c-d}{d}\)
Xét d. ( a - b ) = a . d - b . d
b. ( c - d ) = b . c - b . d
Vì \(\frac{a}{b}=\frac{c}{d}\) => a . d = b . c
hay d. ( a - b ) = b. ( c - d )
=> \(\frac{a-b}{b}=\frac{c-d}{d}\)
Vậy \(\frac{a-b}{b}=\frac{c-d}{d}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k\)
\(y=3k\)
\(z=5k\)
Thay \(x=2k;y=3k;z=5k\) vào \(x.y.z=810\) ta được:
\(2k.3k.5k=810\)
\(30k^3=810\)
\(k^3=27\)
\(k^3=3^3\)
\(\Rightarrow k=3\)
\(\Rightarrow x=2k=2.3=6\)
\(y=3k=3.3=9\)
\(z=5k=5.3=15\)
Vậy \(x=6;y=9;z=15\)
a) \(\frac{2}{\left(x+2\right).\left(x+4\right)}+\frac{4}{\left(x+4\right).\left(x+8\right)}+\frac{6}{\left(x+8\right).\left(x+14\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{x+14}{\left(x+2\right).\left(x+14\right)}-\frac{x+2}{\left(x+2\right).\left(x+14\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{x+14-x+2}{\left(x+2\right).\left(x+14\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{16}{\left(x+2\right).\left(x+4\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow x=16\)
Vậy x = 16
\(b,\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\left(vì\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\right)\)
\(\Leftrightarrow x=-1\)
\(\text{Vậy }x=-1\)
b. (x+1)(1/10+1/11+1/12-1/13-1/14)=0
x+1=0 (vì : 1/10+1/11+1/12-1/13-1/14>0)
x=-1
Ta thấy:\(\left|3x+\frac{1}{7}\right|\ge0\)
\(\Rightarrow-\left|3x+\frac{1}{7}\right|\le0\)
\(\Rightarrow-\left|3x+\frac{1}{7}\right|+\frac{5}{3}\le\frac{5}{3}\)
\(\Rightarrow C\le\frac{5}{3}\)
Dấu= khi \(x=-\frac{1}{7}\)
Vậy MinC=\(\frac{5}{3}\) khi \(x=-\frac{1}{7}\)
a) \(\frac{x}{7}=\frac{18}{14}\)
\(\Rightarrow\frac{x}{7}=\frac{9}{7}\)
\(\Rightarrow x=7\)
Vậy x=7
b)\(6:x=1\frac{3}{4}:5\)
\(\frac{6}{x}=\frac{7}{4}:5\)
\(\frac{6}{x}=\frac{7}{20}\)
\(\Rightarrow6.20=7x\)
\(\Rightarrow120=7.x\)
\(\Rightarrow x=\frac{120}{7}\)
Vậy \(x=\frac{120}{7}\)
\(\frac{1}{x}+\frac{1}{x+1}=\frac{1}{x+2}+\frac{1}{x+3}\)
Điều kiện: \(\left\{\begin{matrix}x\ne0\\x\ne1\\x\ne2\\x\ne3\end{matrix}\right.\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+2}=-\frac{1}{x+1}+\frac{1}{x+3}\)
\(\Leftrightarrow\frac{2}{x^2+2x}=\frac{2}{-x^2-4x-3}\)
\(\Leftrightarrow x^2+2x+x^2+4x+3=0\)
\(\Leftrightarrow2x^2+6x+3=0\)
\(\Leftrightarrow\left[\begin{matrix}x=\frac{-3+\sqrt{3}}{2}\\x=\frac{-3-\sqrt{3}}{2}\end{matrix}\right.\)