
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)
\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)
\(\Rightarrow27>x>18\)
Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)
Vậy....

Ta có:
\(P=\frac{1}{4}-\frac{1}{x}-\frac{1}{x+y}=\frac{1}{4}-\left(\frac{1}{x}+\frac{1}{x+y}\right)\)
Đặt \(\frac{1}{x}+\frac{1}{x+y}=Q\)
Để \(P_{min}\Leftrightarrow Q_{max}\)
vì \(P>0\Rightarrow\frac{1}{4}-Q>0\Rightarrow Q< \frac{1}{4}\)
Hay \(\frac{1}{x}+\frac{1}{x+y}< 4\Leftrightarrow x>4\)mà \(x\inℤ^+\Leftrightarrow x\ge5\)
Do đó x nhỏ nhất <=> x = 5
\(\Rightarrow Q=\frac{1}{5}+\frac{1}{5+y}< \frac{1}{4}.\Rightarrow\frac{1}{5+y}< \frac{1}{4}-\frac{1}{5}=\frac{1}{20}\)
\(Q=\frac{1}{5}+\frac{1}{5+y}.\)vì \(Q_{max}\Leftrightarrow y_{min}\)
mà \(\frac{1}{5+y}< 20\Rightarrow5+y>20.\Rightarrow5+y\ge21\)( vì y nguyên dương)
mà y nhỏ nhất => y = 16
\(\Rightarrow P_{min}=\frac{1}{4}-\frac{1}{5}-\frac{1}{21}=\frac{1}{420}\Leftrightarrow\hept{\begin{cases}x=5\\y=16\end{cases}}\)

Nếu là thi Vio thì chỉ điền đáp số
a) x =6.
b) x = 1; y = 4
Giải kiểu VIO ra đáp số khác với trình bày. 2 bài này đều nhẩm được.
a) Để PS đã cho >0 thì 5<x<7. x chỉ bằng 6 thay vào đúng. Ko cần tìm tiếp
b) Để mẫu chung bằng 4 thì y phải =4; => x = 1. Thỏa mãn.
Cách nhẩm tuy không chặt chẽ bằng bài giải chi tiết nhưng VIO thì rất hiệu quả. Mình trình bày cách nghĩ của mình mong các bạn góp ý.

\(\frac{1}{3}-|\frac{5}{4}-2x|=\frac{1}{4}\)
\(\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{4}+\frac{1}{3}=\frac{7}{12}\)
\(\Leftrightarrow\orbr{\begin{cases}Th1:\frac{5}{4}-2x=\frac{7}{12}\\Th2:\frac{5}{4}-2x=-\frac{7}{12}\end{cases}}\)
\(\Leftrightarrow Th1:\frac{5}{4}-2x=\frac{7}{12}\) \(\Leftrightarrow Th2:\frac{5}{4}-2x=-\frac{7}{12}\)
\(\Leftrightarrow2x=\frac{7}{12}+\frac{5}{4}\) \(\Leftrightarrow2x=-\frac{7}{12}+\frac{5}{4}\)
\(\Leftrightarrow2x=\frac{11}{6}\) \(\Leftrightarrow2x=\frac{2}{3}\)
\(\Leftrightarrow x=\frac{11}{12}\) \(\Leftrightarrow x=\frac{1}{3}\)
P/s : Mình làm bừa ạ nếu kh đúng xin mọi người chỉ thêm ~~

ta có \(\frac{1}{x}+\frac{1}{y}=2\)
=>\(\frac{x+y}{xy}=2\)
=> \(x+y=2xy\)
=> \(x+y-2xy=0\)
=> \(x\left(1-2y\right)+y=0\)
=> \(2x\left(1-2y\right)+2y=0\)
=> \(2x\left(1-2y\right)+2y-1=-1\)
=> \(\left(2x-1\right)\left(1-2y\right)=-1\)
=> \(\left(2x-1\right)\left(2y-1\right)=1\)
Vì x,y là số nguyêm nên 2x-1,2y-1 là ước của 1 nên ta có bảng sau
2x-1 | 1 | -1 |
2y-1 | 1 | -1 |
x | 1 | 0 |
y | 1 | 0 |
kết hợp vơi đk \(x,y\ne0\)=> x=1,y=1
Ta có :
\(\frac{1}{x}+\frac{1}{y}=2\)
\(\Rightarrow\frac{y}{xy}+\frac{x}{xy}=2\)
\(\Rightarrow\frac{y+x}{xy}=2\)
\(\Rightarrow2xy=y+x\)
\(\Rightarrow2xy-y-x=0\)
\(\Rightarrow y\left(2x-1\right)-x=0\)
\(\Rightarrow y\left(2x-1\right)-\frac{1}{2}\left(2x-1\right)-\frac{1}{2}=0\)
\(\Rightarrow\left(y-\frac{1}{2}\right)\left(2x-1\right)=\frac{1}{2}\)
\(\Rightarrow\left(2y-1\right)\left(2x-1\right)=1\)
vì x,y \(\in\)Z nên \(2y-1;2x-1\)\(\in\)Ư ( 1 ) = { 1 ; -1 }
+) 2y - 1 = 1 thì y = 1 khi đó 2x - 1 = 1 => x = 1 ( chọn )
+) 2y - 1 = -1 thì y = 0 khi đó 2x - 1 = -1 thì x = 0 ( loại )
Vậy ( x ; y ) = ( 1 ; 1 )

a
Nếu \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)
Nếu \(y>0\Rightarrow3^y⋮3\)
Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý
Vậy.....
b
Không mất tính tổng quát giả sử \(x\ge y\)
Ta có:
\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)
\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)
Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )
Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)
Vậy x=4;y=2 và các hoán vị

Ta có : \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\)\(\left(x;y\ne0\right)\)
=> \(\frac{x+y}{xy}=\frac{1}{2}\)
=> 2(x + y) = xy
=> 2x + 2y = xy
=> xy - 2x - 2y = 0
=> xy - 2x - 2y + 4 = 4
=> x(y - 2) - 2(y - 2) = 4
=> (x - 2)(y - 2) = 4
Lập bảng xét các trường hợp
x - 2 | 1 | 4 | -4 | -1 | 2 | -2 |
y - 2 | 4 | 1 | -1 | -4 | 2 | -2 |
x | 3 | 6 | -2 (loại) | 1 | 4 | 0(loại) |
y | 6 | 3 | 1 | -2(loại) | 4 | 0(loại) |
Vậy các cặp (x;y) thỏa mãn là (3;6) ; (6;3) ; (4;4)