Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M=x^2-8x+2018=x^2-8x+16+2002=\left(x-4\right)^2+2002\)
\(\left(x-4\right)^2\ge0\forall x\Rightarrow\left(x-4\right)^2+2002\ge2002\)
Dấu " = " xảy ra <=> x - 4 = 0 => x = 4
Vậy MMin = 2002 khi x = 4
b) \(N=4x^2-12x+2019=4x^2-12x+9+2010=\left(2x-3\right)^2+2010\)
\(\left(2x-3\right)^2\ge0\forall x\Rightarrow\left(2x-3\right)^2+2010\ge2010\)
Dấu " = " xảy ra <=> 2x - 3 = 0 => x = 3/2
Vậy NMin = 2010 khi x = 3/2
c) \(P=x^2-x+2016=x^2-x+\frac{1}{4}+\frac{8063}{4}=\left(x-\frac{1}{2}\right)^2+\frac{8063}{4}\)
\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{8063}{4}\ge\frac{8063}{4}\)
Dấu " = " xảy ra <=> x - 1/2 = 0 => x = 1/2
Vậy PMin = 8063/4 khi x = 1/2
d) \(Q=x^2-2x+y^2+4y+2020\)
\(Q=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+2015\)
\(Q=\left(x-1\right)^2+\left(y+2\right)^2+2015\)
\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+2015\ge2015\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy QMin = 2015 khi x = 1 ; y = -2
a) Dễ thấy \(x^2\)luôn dương vậy để A dương thì \(4x\ge0\)
\(\Leftrightarrow x\ge0\)
b) \(B=\left(x-3\right)\left(x+7\right)\)dương khi :
TH1: \(\hept{\begin{cases}x-3>0\\x+7>0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x>-7\end{cases}\Rightarrow}x>3}\)
TH2: \(\hept{\begin{cases}x-3< 0\\x+7< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x< -7\end{cases}\Rightarrow}x< -7}\)
c) Tương tự câu b)
a) Ta có ; \(x^2\ge0\forall x\in R\)
Nên A dương khi 4x \(\ge0\forall x\in R\)
=> \(x\ge0\)
Vậy A dương khi \(x\ge0\)
x2 + 4x = x . ( x + 4 )
để A > 0
\(\Rightarrow\orbr{\begin{cases}x\text{ và }x+4\text{ cùng dương}\\x\text{ và }x+4\text{ cùng âm}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>0\\x+4< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>0\\x< -4\end{cases}\Rightarrow}0< x< -4}\)
X không tồn tại
Do x2 + 4x đạt giá trị dương
=> x2 + 4x > 0
=> x.(x + 4) > 0
Xét 2 trường hợp
Vậy \(\orbr{\begin{cases}x>0\\x< -4\end{cases}}\) thỏa mãn đề bài