K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2016

\(x^2-6x=x\left(x-6\right)\)

Vậy x2 - 6 khác 0 \(\Leftrightarrow\)

\(x\ne0;x\ne6\)

24 tháng 12 2016

ĐKXĐ: x2 + 6x khác 0

<=> x (x + 6) khác 0

<=> { x khác 0

x + 6 khác 0

<=> { x khác 0

x khác -6

26 tháng 12 2019

a) Phân thức xác định khi: \(\Leftrightarrow x-3\ne3\Leftrightarrow x\ne3\)

ĐKXĐ: \(x\ne3\)

b) \(A=\frac{2x^2+6x}{x^2-9}=\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2x}{x-3}\)

c) Thay x = -4 vào phân thức đã thu gọn, ta có:

 \(A=\frac{2.\left(-4\right)}{\left(-4\right)-3}=\frac{8}{7}\)

Vậy: tại x = -4 là \(\frac{8}{7}\)

28 tháng 12 2019

a) \(x^2-9=\left(x-3\right)\left(x+3\right)\)

Phân thức xác định khi: \(\left(x-3\right)\left(x+3\right)\ne0\)

\(\Leftrightarrow\hept{\begin{cases}x-3=0\\x+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\x=-3\end{cases}}\Leftrightarrow x\ne\pm3\)

ĐKXĐ: \(x\ne\pm3\)

b) \(A=\frac{2x^2+6x}{x^2-9}=\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2x}{x-3}\)

c) \(A=\frac{2.\left(-4\right)}{\left(-4\right)-3}=\frac{8}{7}\)

9 tháng 12 2018

a, Để A xác định 

\(\Rightarrow\hept{\begin{cases}3x^2\ne0\\4x\ne0\end{cases}}\Rightarrow x\left(3x-4\right)\ne0\)

\(\Rightarrow x\ne0\Rightarrow3x-4\ne0\Rightarrow x\ne0\)

b Để \(B=\frac{x^2+4x+4}{2x+4}=\frac{\left(x+2\right)^2}{2x+4}\)xác định 

\(\Rightarrow\hept{\begin{cases}2x\ne0\\4\ne0\end{cases}}\Rightarrow2\left(x+2\right)\ne0\)

\(\Rightarrow x+2\ne0\Rightarrow x\ne-2\)

c,, Để \(C=\frac{2x-x^2}{x^2-4}=\frac{x\left(2-x\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)

d, Để D xác định :

\(\Rightarrow\hept{\begin{cases}x^3\ne0\\8\ne0\end{cases}}\Rightarrow x^3-8\ne0\)

\(\Rightarrow x\ne2\)

2 tháng 4 2020

Là ông thọ

16 tháng 8 2016

Ta có:

A = x4 - x3 + 6x2 - x - a

   = x4 - x3 + 5x+ x2 - x + a 

   = x2(x2 - x + 5) + (x2 - x + a)

 ta thấy x2(x2 - x + 5) chia hết cho x2 - x + 5

     nên để A chia hết cho x2 - x + 5 thì 

x2 - x + a phải chia hết cho x2 - x + 5

=> a = 5

23 tháng 12 2016

tại sao ta lại có được = x- x+ 5x+ x- x + a vậy bạn

21 tháng 10 2018

Bài 1 :

a) \(x^2-6x+2023\)

\(=x^2-2\cdot x\cdot3+3^2+2014\)

\(=\left(x-3\right)^2+2014\ge2014\forall x\)

Dấu "=' xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

b) \(B=\left(3x+5\right)^2+\left(3x-5\right)^2-2\left(3x+5\right)\left(3x-5\right)\)

Dễ thấy đây là HĐT thứ 2

\(B=\left(3x-5-3x-5\right)^2\)

\(B=\left(-10\right)^2\)

\(B=100\)

=> tự kết luận

Bài 2 :

\(x^2+4x-45\)

\(=x^2+9x-5x-45\)

\(=x\left(x+9\right)-5\left(x+9\right)\)

\(=\left(x+9\right)\left(x-5\right)\)

21 tháng 10 2018

1a) A=x2 - 6x + 9 +2014

A= (x-3)2 + 2014

ta có: (x-3)2\(\ge\)0\(\forall x\)

\(\Rightarrow\left(x+3\right)^2+2014\ge2014\)

Dấu "=" xảy ra <=> (x+3)2 = 0

                        <=> x+3=0

                        <=> x = -3

Vậy Amin=2014 <=> x = -3

b) B= \(\left(3x+5\right)^2+\left(3x-5\right)^2-2\left(3x+5\right)\left(3x-5\right)\) 

\(\left(3x+5-3x+5\right)^2\)

= 5= 25

2)\(x^2+4x-45\)

\(x^2+9x-5x-45\)

=\(x\left(x+9\right)-5\left(x+9\right)\)

=\(\left(x-5\right)\left(x+9\right)\)