Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2
\(\text{a) }\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+.....+\frac{1}{98.99.100}\right)x=-3\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{98.99}-\frac{1}{99.100}\right)x=-3\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)x=-3\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)x=-3\)
\(\Rightarrow\frac{1}{2}.\left(\frac{4950}{9900}-\frac{1}{9900}\right)x=-3\)
\(\Rightarrow\left(\frac{1}{2}.\frac{4949}{9900}\right).x=-3\)
\(\Rightarrow\frac{4949}{19800}x=-3\)
\(\Rightarrow x=\left(-3\right).\frac{19800}{4949}\)
\(\Rightarrow x=\frac{-59400}{4949}\)
P/s : ko chắc nha
A =15/x+2 + 14/x+2 = 29/x+2
b) x+2 là U(29) = { -1;1;-29;29}
=> x ={ -3;-1;-31;27}
Để B có giá trị nguyên thì \(\frac{5}{\sqrt{x}-1}\)\(\in\)Z
\(\Rightarrow\)\(5\)\(⋮\)\(\sqrt{x}-1\)
\(\Rightarrow\)\(\sqrt{x}-1\)\(\in\)\(Ư\left(5\right)\)
\(Ư\left(5\right)\)\(=\)\(\left\{1;-1;5;-5\right\}\)
Do đó :
\(\sqrt{x}-1\)\(=\) \(1\)\(\Rightarrow\)\(x\)\(=\)\(\left(1+1\right)^2\)= \(4\)
\(\sqrt{x}-1\)\(=\) \(-1\)\(\Rightarrow\)\(x\)\(=\)\(\left(-1+1\right)^2\)= \(0\)
\(\sqrt{x}-1\)\(=\) \(5\)\(\Rightarrow\)\(x\)\(=\)\(\left(5+1\right)^2\)= 36
\(\sqrt{x}-1\)\(=\)\(-5\)\(\Rightarrow\)\(x\)\(=\)\(\left(-5+1\right)^2\)= 16
Vậy \(x\)\(\in\)\(\left\{4;0;36;16\right\}\)
a) Để \(\frac{3}{x-1}\inℤ\Rightarrow\left(x-1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{-2;0;2;4\right\}\)
b) Để \(\frac{4}{2x-1}\inℤ\Rightarrow\left(2x-1\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
=> \(2x\in\left\{-3;-1;0;2;3;5\right\}\)
=> \(x\in\left\{-\frac{3}{2};-\frac{1}{2};0;1;\frac{3}{2};\frac{5}{2}\right\}\)
c) Ta có: \(\frac{3x+7}{x-7}=\frac{\left(3x-21\right)+28}{x-7}=2+\frac{28}{x-7}\)
Xong xét các TH như a,b nhé
thanks nhưng mai mik mới t.i.k đc bạn
Để P đạt Giá trị nguyên
\(\Rightarrow\sqrt{x}+1\inƯ\left(3\right)=\left\{3;1\right\}\)\(\left(\sqrt{x}\ge0\forall x\right)\)
\(\Rightarrow\sqrt{x}\in\left\{2;0\right\}\)
\(\Rightarrow x\in\left\{\sqrt{2};0\right\}\)
Sai rồi bạn