Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P/s : sửa đề
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
a) \(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(P=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(P=\frac{-3\sqrt{x}-3x}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(P=\frac{-3\sqrt{x}\left(1+\sqrt{x}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)
\(P=\frac{-3\sqrt{x}}{\sqrt{x}+3}\)
b) \(P< -\frac{1}{2}\)
\(\Leftrightarrow\frac{-3\sqrt{x}}{\sqrt{x}+3}+\frac{1}{2}< 0\)
\(\Leftrightarrow\frac{-6\sqrt{x}+\sqrt{x}+3}{2\left(\sqrt{x}+3\right)}< 0\)
\(\Leftrightarrow\frac{-5\sqrt{x}+3}{2\left(\sqrt{x}+3\right)}< 0\)
Mà \(2\left(\sqrt{x}+3\right)>0\)
\(\Rightarrow-5\sqrt{x}+3< 0\)
\(\Leftrightarrow-5\sqrt{x}< -3\)
\(\Leftrightarrow\sqrt{x}>\frac{3}{5}\)
\(\Leftrightarrow x>\frac{9}{25}\)
Vấy .................
c) \(P.\left(\sqrt{x}+3\right)+2\sqrt{x}-2+x=2\)
\(\Leftrightarrow\frac{-3\sqrt{x}}{\sqrt{x}+3}\left(\sqrt{x}+3\right)+2\sqrt{x}-2+x=2\)
\(\Leftrightarrow-3\sqrt{x}+2\sqrt{x}-2-2+x=0\)
\(\Leftrightarrow-\sqrt{x}-4+x=0\)
\(\Leftrightarrow-\sqrt{x}\left(1-\sqrt{x}\right)=4\)
Còn lại lập bảng tự tìm giá trị của x là ra .( Chú ý : đối chiếu ĐKXĐ )
d)
\(P.\left(\sqrt{x}+3\right)+x\left(\sqrt{x}-m\right)=x-\sqrt{x}\left(3+m\right)\)
\(\Leftrightarrow\frac{-3\sqrt{x}}{\sqrt{x}+3}\left(\sqrt{x}+3\right)+x\sqrt{x}-xm=x-3\sqrt{x}-m\sqrt{x}\)
\(\Leftrightarrow-3\sqrt{x}+x\sqrt{x}-xm-x+3\sqrt{x}+m\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(x+m\right)-x\left(m+1\right)=0\)
\(\Leftrightarrow\sqrt{x}\left[x+m-m\sqrt{x}-\sqrt{x}\right]=0\)
\(\Leftrightarrow\sqrt{x}\left[m\left(1-\sqrt{x}\right)-\sqrt{x}\left(1-\sqrt{x}\right)\right]=0\)
\(\Leftrightarrow\sqrt{x}=0;m-\sqrt{x}=0;1-\sqrt{x}=0\)
+) \(\sqrt{x}=0\Leftrightarrow x=0\left(TM\right)\)
+) \(1-\sqrt{x}=0\)
\(\Leftrightarrow x=1\left(TM\right)\)
+) \(m-\sqrt{x}=0\)
\(\Leftrightarrow\orbr{\begin{cases}m-\sqrt{0}=0\\m-\sqrt{1}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\m=1\end{cases}}}\)
Vậy ..................
a)\(\sqrt{\left(x+3\right)\left(x+2\right)}+\sqrt{\left(x+3\right)\left(x-1\right)}=2\sqrt{\left(x+3\right)^2}\)
\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x+2\right)}+\sqrt{\left(x+3\right)\left(x-1\right)}-2\sqrt{\left(x+3\right)^2}=0\)
\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x+2}+\sqrt{x-1}-2\sqrt{x+3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x+3}=0\\\sqrt{x+2}+\sqrt{x-1}=2\sqrt{x+3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\2x+1+2\sqrt{\left(x-1\right)\left(x+2\right)}=4\left(x+3\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\2\sqrt{\left(x-1\right)\left(x+2\right)}=2x+11\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\4\left(x-1\right)\left(x+2\right)=4x^2+44x+121\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\-40x=129\end{cases}}\Rightarrow x=-3\) (thỏa)
b)\(\frac{3x}{\sqrt{3x+10}}=\sqrt{3x+1}-1\)
Đk:\(x\ge-\frac{1}{3}\)
\(pt\Leftrightarrow\frac{3x}{\sqrt{3x+10}}+1=\sqrt{3x+1}\)
\(\Leftrightarrow\frac{3x}{\sqrt{3x+10}}+1-\left(\frac{3}{5}x+1\right)=\sqrt{3x+1}-\left(\frac{3}{5}x+1\right)\)
\(\Leftrightarrow\frac{3x}{\sqrt{3x+10}}-\frac{3}{5}x=\frac{3x+1-\left(\frac{3}{5}x+1\right)^2}{\sqrt{3x+1}+\frac{3}{5}x+1}\)
\(\Leftrightarrow\frac{3x\left(5-\sqrt{3x+10}\right)}{5\sqrt{3x+10}}=\frac{-\frac{9}{25}x\left(x-5\right)}{\sqrt{3x+1}+\frac{3}{5}x+1}\)
\(\Leftrightarrow\frac{3x\cdot\frac{25-3x-10}{5+\sqrt{3x+10}}}{5\sqrt{3x+10}}-\frac{-\frac{9}{25}x\left(x-5\right)}{\sqrt{3x+1}+\frac{3}{5}x+1}=0\)
\(\Leftrightarrow\frac{3x\cdot\frac{-3\left(x-5\right)}{5+\sqrt{3x+10}}}{5\sqrt{3x+10}}-\frac{-\frac{9}{25}x\left(x-5\right)}{\sqrt{3x+1}+\frac{3}{5}x+1}=0\)
\(\Leftrightarrow x\left(x-5\right)\left(\frac{\frac{-9}{5+\sqrt{3x+10}}}{5\sqrt{3x+10}}-\frac{-\frac{9}{25}}{\sqrt{3x+1}+\frac{3}{5}x+1}\right)=0\)
Dễ thấy: \(\frac{\frac{-9}{5+\sqrt{3x+10}}}{5\sqrt{3x+10}}-\frac{-\frac{9}{25}}{\sqrt{3x+1}+\frac{3}{5}x+1}< 0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)
\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)
Vì \(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)
\(\Rightarrow x=3\)
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)