\(\frac{2x^2+10x+12}{x^3-4x}=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2017

\(\frac{2x^2+10x+12}{x^3-4x}=0\)

\(\Leftrightarrow\frac{2\left(x^2+5x+6\right)}{x^3-4x}=0\)

\(\Leftrightarrow2\left(x^2+5x+6\right)=0\)

\(\Leftrightarrow2\left(x^2+2x+3x+6\right)=0\)

\(\Leftrightarrow2\left[x\left(x+2\right)+3\left(x+2\right)\right]=0\)

\(\Leftrightarrow2\left(x+3\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+3=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}}\)

10 tháng 4 2020

a) A= \(\frac{3x^2+5x-2}{3x^2-7x+2}=0\)

\(ĐK:3x^2-7x+2\ne0\)

\(\Leftrightarrow\orbr{\begin{cases}x\ne\frac{1}{3}\\x\ne2\end{cases}\left(^∗\right)}\)

=> 3x+ 5x + 2 =0

<=> 3x2 + 3x + 2x +2 = 0

<=> 3x .( x + 1 ) + 2 .( x + 1 ) =0

<=> (  x + 1 )(3x + 2 ) =0

<=> \(\orbr{\begin{cases}x+1=0\\3x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{-2}{3}\left(t/m\left(^∗\right)\right)\end{cases}}}\)

Vậy x = -2/3 

b) \(B=\frac{2x^2+10x+12}{x^3-4x}=0\left(ĐK:x\ne0;x^2\ne4\Leftrightarrow x\ne0;x\ne\pm2\right)\)

<=> 2x2+ 10x + 12 = 0

<=> x2 + 5x+ 6 =0

<=> ( x + 2 ) ( x + 3 ) =0\(\Leftrightarrow\orbr{\begin{cases}x=-2\left(L\right)\\x=-3\left(t/m\right)\end{cases}}\) 

Vậy x = -3 

c)\(C=\frac{x^3+x^2-x-1}{x^3+2x-5}=0\)                         \(ĐK:x^3+2x-5\ne0\left(^∗\right)\)

<=> x3 + x2 -x -1 =0

<=> ( x - 1 )(x2 + 2x + 1 ) 

<=> ( x-1 ) (x+1)2 = 0

<=> \(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(t/m\left(^∗\right)\right)\\x=-1\left(t/m\left(^∗\right)\right)\end{cases}}}\)

Vậy x = { 1 ; -1 }

11 tháng 4 2020

a) A = \(\frac{3x^2+5x-2}{3x^2-7x+2}=0\) (ĐKXĐ: x khác 1/3, x khác 2)

<=> 3x^2 + 5x - 2 = 0

<=> (3x - 1)(x + 2) = 0

<=> 3x - 1 = 0 hoặc x + 2 = 0

<=> 3x = 1 hoặc x = -2

<=> x = 1/3 (ktm) hoặc x = -2 (tm)

=> x = -2

b) B = \(\frac{2x^2+10x+12}{x^3-4x}=0\) (ĐKXĐ: x khác 0, x khác +-2)

<=> \(\frac{2\left(x^2+5x+6\right)}{x\left(x^2-4\right)}=0\)

<=> \(\frac{2\left(x+2\right)\left(x+3\right)}{x\left(x-2\right)\left(x+2\right)}=0\)

<=> \(\frac{2\left(x+3\right)}{x\left(x-2\right)}=0\)

<=> 2(x + 3) = 0

<=> x + 3 = 0

<=> x = -3

c) C = \(\frac{x^3+x^2-x-1}{x^3+2x-5}=0\) (ĐKXĐ: x khác x^3 + 2x - 5)

<=> \(\frac{x^2\left(x+1\right)-\left(x+1\right)}{x^3+2x-5}=0\)

<=> \(\frac{\left(x+1\right)\left(x^2-1\right)}{x^3+2x-5}=0\)

<=> \(\frac{\left(x+1\right)\left(x-1\right)\left(x+1\right)}{x^3+2x-5}=0\)

<=> (x + 1)(x - 1) = 0

<=> x + 1 = 0 hoặc x - 1 = 0

<=> x = -1 hoặc x = 1

AH
Akai Haruma
Giáo viên
21 tháng 2 2020

Bài 1:

ĐKXĐ của phân thức đã cho là:

\(x^2-4\neq 0\Leftrightarrow (x-2)(x+2)\neq 0\Leftrightarrow x\neq \pm 2\)

AH
Akai Haruma
Giáo viên
21 tháng 2 2020

Bài 2:

a)

ĐKXĐ: \(x^3-4x\neq 0\Leftrightarrow x(x-2)(x+2)\neq 0\Leftrightarrow x\neq \pm 2; x\neq 0\)

Để phân thức đã cho bằng $0$ thì:

\(2x^2+10x+12=0\)

\(\Leftrightarrow x^2+5x+6=0\)

\(\Leftrightarrow (x+2)(x+3)=0\Rightarrow \left[\begin{matrix} x=-2\\ x=-3\end{matrix}\right.\)

Kết hợp với ĐKXĐ suy ra $x=-3$

b)

ĐKXĐ: \(x^3-2x^2+x\neq 0\Leftrightarrow x(x-1)^2\neq 0\Leftrightarrow x\neq 0; x\ne 1 \)

Để phân thức đã cho bằng $0$ thì:

\(x^3+x^2-x-1=0\)

\(\Leftrightarrow x^2(x+1)-(x+1)=0\)

\(\Leftrightarrow (x^2-1)(x+1)=0\)

\(\Leftrightarrow (x-1)(x+1)^2=0\Rightarrow \left[\begin{matrix} x=1\\ x=-1\end{matrix}\right.\)

Kết hợp với ĐKXĐ suy ra $x=-1$

19 tháng 2 2020

Bài 3 :

Ta có : \(A=x^2+x+2012\)

=> \(A=x^2+x+\left(\frac{1}{2}\right)^2+\frac{8047}{4}\)

=> \(A=\left(x+\frac{1}{2}\right)^2+\frac{8047}{4}\)

- Ta thấy : \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

=> \(\left(x+\frac{1}{2}\right)^2+\frac{8047}{4}\ge\frac{8047}{4}\forall x\)

- Dấu "=" xảy ra <=> \(x+\frac{1}{2}=0\)

<=> \(x=-\frac{1}{2}\)

Vậy MinA = \(\frac{8047}{4}\) <=> x = \(-\frac{1}{2}\) .

Bài 1 :

a, Ta có : \(\left(3x-2\right)\left(4+5x\right)=0\)

=> \(\left[{}\begin{matrix}3x-2=0\\4+5x=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}3x=2\\5x=-4\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{2}{3}\\x=-\frac{4}{5}\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = \(\frac{2}{3}\), x = \(-\frac{4}{5}\) .

b,- ĐKXĐ : \(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)

=> \(x\ne\pm1\)

Ta có : \(\frac{x+1}{x-1}-\frac{4}{x+1}=\frac{3-x^2}{1-x^2}\)

=> \(\frac{\left(x+1\right)^2}{x^2-1}-\frac{4\left(x-1\right)}{x^2-1}=\frac{x^2-3}{x^2-1}\)

=> \(\left(x+1\right)^2-4\left(x-1\right)=x^2-3\)

=> \(x^2+2x+1-4x+4=x^2-3\)

=> \(-2x=-3-5\)

=> \(x=4\left(TM\right)\)

Vậy phương trình có nghiệm là x = 4 .

c, Ta có : \(\frac{10x+3}{2009}+\frac{10x-1}{2013}=\frac{10x+1}{2011}-\frac{2-10x}{2014}\)

=> \(\frac{10x+3}{2009}+\frac{10x-1}{2013}=\frac{10x+1}{2011}+\frac{10x-2}{2014}\)

=> \(\frac{10x+3}{2009}+1+\frac{10x-1}{2013}+1=\frac{10x+1}{2011}+1+\frac{10x-2}{2014}+1\)

=> \(\frac{10x+3}{2009}+\frac{2009}{2009}+\frac{10x-1}{2013}+\frac{2013}{2013}=\frac{10x+1}{2011}+\frac{2011}{2011}+\frac{10x-2}{2014}+\frac{2014}{2014}\)

=> \(\frac{10x+2012}{2009}+\frac{10x+2012}{2013}=\frac{10x+2012}{2011}+\frac{10x+2012}{2014}\)

=> \(\frac{10x+2012}{2009}+\frac{10x+2012}{2013}-\frac{10x+2012}{2011}-\frac{10x+2012}{2014}=0\)

=> \(\left(10x+2012\right)\left(\frac{1}{2009}+\frac{1}{2013}-\frac{1}{2011}-\frac{1}{2014}\right)=0\)

=> \(10x+2012=0\)

=> \(x=-\frac{2012}{10}\)

Vậy phương trình có nghiệm là x = \(-\frac{2012}{10}\) .

19 tháng 2 2020

Bài 3:

Giải:

Ta có : A = x2 + x + 2012

= x2 + 2.\(\frac{1}{2}\).x + \(\frac{1}{4}\) + \(\frac{8047}{4}\)

= (x + \(\frac{1}{2}\))2 + \(\frac{8047}{4}\)\(\frac{8047}{4}\)

⇒ Amin = \(\frac{8047}{4}\) ⇔ (x + \(\frac{1}{2}\))2 = 0 ⇔ x = \(-\frac{1}{2}\)

Vậy Amin = \(\frac{8047}{4}\) tại x = \(-\frac{1}{2}\)

Chúc bạn học tốt@@

10 tháng 9 2019

1) 

a) \(2x^2-12x+18+2xy-6y\)

\(=2x^2-6x-6x+18+2xy-6y\)

\(=\left(2xy+2x^2-6x\right)-\left(6y+6x-18\right)\)

\(=x\left(2y+2x-6\right)-3\left(2y+2x-6\right)\)

\(=\left(x-3\right)\left(2y+2x-6\right)\)

\(=2\left(x-3\right)\left(y+x-3\right)\)

b) \(x^2+4x-4y^2+8y\)

\(=x^2+4x-4y^2+8y+2xy-2xy\)

\(=\left(-4y^2+2xy+8y\right)+\left(-2xy+x^2+4x\right)\)

\(=2y\left(-2y+x+4\right)+x\left(-2y+x+4\right)\)

\(=\left(2y+x\right)\left(-2y+x+4\right)\)

2)  \(5x^3-3x^2+10x-6=0\)

\(\Leftrightarrow x^2\left(5x-3\right)+2\left(5x-3\right)=0\Leftrightarrow\left(x^2+2\right)\left(5x-3\right)=0\)

Mà \(x^2+2>0\Rightarrow5x-3=0\Rightarrow x=\frac{3}{5}\)

\(x^2+y^2-2x+4y+5=0\)

\(\Leftrightarrow x^2+y^2-2x+4y+4+1=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

3)\(P\left(x\right)=x^2+y^2-2x+6y+12\)

\(P\left(x\right)=x^2+y^2-2x+6y+1+9+2\)

\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)

Vậy \(P\left(x\right)_{min}=2\Leftrightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

Bài làm

a) 2x2 - 12x + 18 + 2xy - 6y

= 2x2 - 6x - 6x + 18 + 2xy - 6y 

= ( 2xy + 2x2 - 6x ) - ( 6y + 6x - 18 )

= 2x( y + x - 3 ) - 6( y + x - 3 )

= ( 2x - 6 ) ( y + x - 3 )

# Học tốt #

3 tháng 7 2020

a) 4 ( x + 5 )( x + 6 )( x + 10 )( x + 12 ) = 3x2
Do x = 0 không là nghiệm pt nên chia 2 vế pt cho \(x^2\ne0\), ta được :

\(\frac{4}{x^2}\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3\)

\(\Leftrightarrow4\left(x+\frac{60}{x}+17\right)\left(x+\frac{60}{x}+16\right)=3\)

Đến đây ta đặt  \(x+\frac{60}{x}+16=t\left(1\right)\)

Ta được :

\(4t\left(t+1\right)=3\Leftrightarrow4t^2+4t-3=0\Leftrightarrow\left(2t+3\right)\left(2t-1\right)=0\)

Từ đó ta lắp vào ( 1 ) tính được x 

16 tháng 12 2022

a: \(\Leftrightarrow4\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3x^2\)

\(\Leftrightarrow4\cdot\left[\left(x^2+60\right)^2+33x\left(x^2+60\right)+272x^2\right]=3x^2\)

=>4(x^2+60)^2+132x(x^2+60)+1085x^2=0

=>4(x^2+60)^2+62x(x^2+60)+70x(x^2+60)+1085x^2=0

=>2(x^2+60)(2x^2+120+31x)+35x(2x^2+120+31x)=0

=>(2x^2+120+35x)(2x^2+31x+120)=0

=>\(x\in\left\{\dfrac{-35\pm\sqrt{265}}{4};-\dfrac{15}{2};-8\right\}\)

b: Đặt x^2-3x=a

Phương trình sẽ là \(\dfrac{1}{a+3}+\dfrac{2}{a+4}=\dfrac{6}{a+5}\)

\(\Leftrightarrow\dfrac{a+4+2a+6}{\left(a+3\right)\left(a+4\right)}=\dfrac{6}{a+5}\)

=>(3a+10)(a+5)=6(a^2+7a+12)

=>6a^2+42a+72=3a^2+15a+10a+50

=>3a^2+17a+22=0

=>x=-2 hoặc x=-11/3