Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a) Để căn thức \(\sqrt{\frac{2}{9-x}}\) có nghĩa thì \(\left\{{}\begin{matrix}\frac{2}{9-x}\ge0\\9-x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9-x>0\\x\ne9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 9\\x\ne9\end{matrix}\right.\Leftrightarrow x< 9\)
b) Ta có: \(x^2+2x+1\)
\(=\left(x+1\right)^2\)
mà \(\left(x+1\right)^2\ge0\forall x\)
nên \(x^2+2x+1\ge0\forall x\)
Do đó: Căn thức \(\sqrt{x^2+2x+1}\) xác được với mọi x
c) Để căn thức \(\sqrt{x^2-4x}\) có nghĩa thì \(x^2-4x\ge0\)
\(\Leftrightarrow x\left(x-4\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x-4\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x\ge4\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x< 4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x< 0\end{matrix}\right.\)
Bài 3:
a) Ta có: \(\sqrt{\left(3-\sqrt{10}\right)^2}\)
\(=\left|3-\sqrt{10}\right|\)
\(=\sqrt{10}-3\)(Vì \(3< \sqrt{10}\))
b) Ta có: \(\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(=\left|\sqrt{5}-2\right|\)
\(=\sqrt{5}-2\)(Vì \(\sqrt{5}>2\))
c) Ta có: \(3x-\sqrt{x^2-2x+1}\)
\(=3x-\sqrt{\left(x-1\right)^2}\)
\(=3x-\left|x-1\right|\)
\(=\left[{}\begin{matrix}3x-\left(x-1\right)\left(x\ge1\right)\\3x-\left(1-x\right)\left(x< 1\right)\end{matrix}\right.\)
\(=\left[{}\begin{matrix}3x-x+1\\3x-1+x\end{matrix}\right.=\left[{}\begin{matrix}2x+1\\4x-1\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ ĐKXĐ: \(x\ge5\)
b/ ĐKXĐ: \(\left\{{}\begin{matrix}1-4x\ge0\\x\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le\frac{1}{4}\\x\ne0\end{matrix}\right.\)
c/ ĐKXĐ: \(2x-1\le0\Rightarrow2x\le1\Rightarrow x\le\frac{1}{2}\)
d/ ĐKXĐ: \(2x-1>0\Rightarrow x>\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ đkxđ: \(x+3\ge0\Leftrightarrow x\ge-3\)
b/ \(\left\{{}\begin{matrix}4x-1\ge0\\x\ne\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{4}\\x\ne\dfrac{1}{2}\end{matrix}\right.\)
c/ \(2-x^2>0\Leftrightarrow x^2< 2\Leftrightarrow-\sqrt{2}< x< \sqrt{2}\)
d/ \(6-x-x^2>0\Leftrightarrow\left(x+3\right)\left(2-x\right)>0\Leftrightarrow\left(x+3\right)\left(x-2\right)< 0\Leftrightarrow-3< x< 2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
cai nay hinh nhu la co trong nang cao hat trien lo 8 thi phai cho
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2,\)
\(a,\sqrt{x^2-4x+3}=3\)
\(\Rightarrow x^2-4x+3=9\)
\(\Rightarrow x^2-4x-6=0\)
\(\Rightarrow\left(x-2\right)^2=10\)
\(\Rightarrow\orbr{\begin{cases}x-2=\sqrt{10}\\x-2=-\sqrt{10}\end{cases}\Rightarrow\orbr{\begin{cases}x=2+\sqrt{10}\\x=2-\sqrt{10}\end{cases}}}\)
\(4x^2-1\ge0\Leftrightarrow\left(2x-1\right)\left(2x+1\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\ge\frac{1}{2}\\x\le-\frac{1}{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x-2\ge0\\x-3\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ge3\end{matrix}\right.\) \(\Rightarrow x\ge3\)
a) Để căn thức có nghĩa
\(\Rightarrow4x^2-1\ge0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-1\ge0\\2x+1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-1< 0\\2x+1< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge\frac{1}{2}\\x< -\frac{1}{2}\end{matrix}\right.\)
Vậy căn thức trên có nghĩa \(\Leftrightarrow x\ge\frac{1}{2}\) hoặc \(x< -\frac{1}{2}\)
b) Để căn thức có nghĩa
\(\Rightarrow\left\{{}\begin{matrix}x-2\ge0\\x-3\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ge3\end{matrix}\right.\)
\(\Leftrightarrow x\ge3\)
Vậy căn thức trên có nghĩa \(\Leftrightarrow x\ge3\)