K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2018

Ta có:  - 2 x + 3  có nghĩa khi và chỉ khi:

-2x + 3 ≥ 0 ⇒ -2x  ≥  -3 ⇒ x ≤ 3/2

12 tháng 6 2019

a) \(\sqrt{x+3}+\sqrt{x^2+9}\)

Ta thấy \(x^2\ge0\Rightarrow x^2+9\ge9\Rightarrow\sqrt{x^2+9}\ge3\)(luôn xác định)

Vậy để biểu thức xác định thì \(\sqrt{x+3}\)phải xác định

\(\Rightarrow x+3\ge0\Leftrightarrow x\ge-3\)

Vậy \(ĐKXĐ:x\ge-3\)

12 tháng 6 2019

b) \(\sqrt{\frac{x-1}{x+2}}\)

Để biểu thức trên xác định thì x - 1 và x + 2 cùng dấu

\(TH1:\hept{\begin{cases}x-1>0\\x+2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x>-2\end{cases}}\Rightarrow x>1\)

\(TH1:\hept{\begin{cases}x-1< 0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x< -2\end{cases}}\Rightarrow x< -2\)

Vậy \(ĐKXĐ:x>1;x< -2\)

19 tháng 6 2017

Để căn thức trên có nghĩa thì:

\(\sqrt{x-2}-1\ge0\)

<=> \(\sqrt{x-2}\ge1\)

<=> \(x-2\ge1\)

<=> \(x\ge3\)

15 tháng 9 2020

mik ko biết

15 tháng 9 2020

Để y có nghĩa

\(\Leftrightarrow\hept{\begin{cases}x^2-5x+6\ge0\\x-1\ge0\\\sqrt{x-1}\ne0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2-5x+25-19\ge0\\x\ge1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-5\right)^2-19\ge0\\x\ge1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-5\right)^2\ge19\\x\ge1\end{cases}}\)

Đến đây tự làm được rồi nhỉ ??

27 tháng 10 2021

Trả lời:

\(\sqrt{\frac{2}{x^2-4x+4}}\) có nghĩa \(\Leftrightarrow\hept{\begin{cases}\frac{2}{x^2-4x+4}\ge0\\x^2-4x+4\ne0\end{cases}\Leftrightarrow\frac{2}{x^2-4x+4}>0}\)

\(\Leftrightarrow x^2-4x+4>0\Leftrightarrow\left(x-2\right)^2>0\) với mọi x khác 2

Vậy với mọi x khác 2 thì căn thức có nghĩa 

19 tháng 6 2017

ĐKXĐ của \(\sqrt{2\left|x\right|-1}\) là \(2\left|x\right|-1\ge0\)

\(\Leftrightarrow2\left|x\right|\ge1\)

\(\Leftrightarrow\left|x\right|\ge\frac{1}{2}\)

\(\Rightarrow\orbr{\begin{cases}x\ge\frac{1}{2}\\x\le-\frac{1}{2}\end{cases}}\)

8 tháng 7 2015

\(\sqrt{\frac{x^2+1}{1-x}}\)có nghĩa khi 

\(\frac{x^2+1}{1-x}\ge0\)

ta thấy x2+1\(\ge\)0 nên để

\(\frac{x^2+1}{1-x}\ge0\)thì 1-x\(\ge\)0

mà 1-x\(\ne\)0

1-x>0

<=>x>1

vậy x>1 thì căn thức có nghĩa

29 tháng 5 2016

Đề bài là: Tìm x để biểu thức A có nghĩa: \(A=\sqrt{2-\sqrt{x-1}}\)

Biểu thức A có nghĩa <=> \(x-1>0\) và \(2-\sqrt{x-1}>0\)

<=> \(x>1\)và \(\sqrt{x-1}< 2\)    

<=> \(x>1\) và \(x-1< 4\)

<=> \(x>1\) và \(x< 5\)

<=> \(1< x< 5\)