Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cai nay hinh nhu la co trong nang cao hat trien lo 8 thi phai cho
1) Để biểu thức \(\sqrt{-2x}\) có nghĩa thì \(-2x\ge0\Leftrightarrow x\le0\)
2) Để biểu thức \(\sqrt{15x}\) có nghĩa thì \(15x\ge0\Leftrightarrow x\ge0\)
3) Để biểu thức \(\sqrt{2x+1}\) có nghĩa thì \(2x+1\ge0\Leftrightarrow2x\ge-1\Leftrightarrow x\ge\dfrac{-1}{2}\)
4) Để biểu thức \(\sqrt{3-6x}\) có nghĩa thì \(3-6x\ge0\Leftrightarrow6x\le3\Leftrightarrow x\le\dfrac{1}{2}\)
5) Để biểu thức \(\dfrac{1}{2-\sqrt{x}}\) có nghĩa thì \(\left\{{}\begin{matrix}x\ge0\\2-\sqrt{x}\ne0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
6) Để biểu thức \(\dfrac{3}{\sqrt{x^2-1}}\) có nghĩa thì \(x^2-1>0\Leftrightarrow x^2>1\Leftrightarrow\)\(\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)
7) Ta có \(x^2\ge0\Leftrightarrow2x^2\ge0\Leftrightarrow2x^2+3\ge3>0\)
Vậy với mọi x thì biểu thức 2x2+3 luôn được xác định
8) Ta có \(-x^2\le0\Leftrightarrow-x^2-5\le-5< 0\)
Vậy với mọi x thì biểu thức \(\dfrac{5}{\sqrt{-x^2-2}}\) sẽ không xác định
a/ đkxđ: \(x+3\ge0\Leftrightarrow x\ge-3\)
b/ \(\left\{{}\begin{matrix}4x-1\ge0\\x\ne\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{4}\\x\ne\dfrac{1}{2}\end{matrix}\right.\)
c/ \(2-x^2>0\Leftrightarrow x^2< 2\Leftrightarrow-\sqrt{2}< x< \sqrt{2}\)
d/ \(6-x-x^2>0\Leftrightarrow\left(x+3\right)\left(2-x\right)>0\Leftrightarrow\left(x+3\right)\left(x-2\right)< 0\Leftrightarrow-3< x< 2\)
1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)
\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)
\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)
Dấu '=' xảy ra khi x=0
2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)
Dấu '=' xảy ra khi x=0
3: \(A=-2x-3\sqrt{x}+2< =2\)
Dấu '=' xảy ra khi x=0
5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)
Dấu '=' xảy ra khi x=1
bài 2:
a: \(\dfrac{25}{5-2\sqrt{3}}=\dfrac{125+10\sqrt{3}}{13}\)
b: \(\dfrac{8}{\sqrt{5}+2}=8\sqrt{5}-32\)
c: \(\dfrac{6}{2\sqrt{3}-\sqrt{7}}=\dfrac{12\sqrt{3}+6\sqrt{7}}{5}\)
d: \(=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}=\dfrac{\sqrt{6}}{2}\)
Bài 1:
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\notin\left\{1;4\right\}\end{matrix}\right.\)
b: \(P=\dfrac{x-1-4\sqrt{x}+\sqrt{x}+1}{x-1}\cdot\dfrac{x-1}{x-2\sqrt{x}}\)
\(=\dfrac{x-3\sqrt{x}}{x-2\sqrt{x}}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)
c: Để \(P=\dfrac{1}{2}\) thì \(2\sqrt{x}-6=\sqrt{x}-2\)
hay x=16
1)
ĐK: \(x\geq 5\)
PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)
\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)
2)
ĐK: \(x\geq -1\)
\(\sqrt{x+1}+\sqrt{x+6}=5\)
\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)
\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)
Vì \(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$
\(\Rightarrow x=3\) (thỏa mãn)
Vậy .............
có phải/....
1) \(A=\dfrac{x+3}{\sqrt{x}-2}\)
\(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\sqrt{x}-2}{x-4}\) hay \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\left(\sqrt{x}-2\right)}{x-4}\)
2) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)
1) \(\sqrt{1+x^2}\) có nghĩa \(\Leftrightarrow1+x^2\ge0\)
ta có : \(x^2\ge0\forall x\) \(\Rightarrow x^2+1\ge1>0\forall x\)
vậy \(\sqrt{1+x^2}\) luôn luôn tồn tại với mọi x
2) \(\sqrt{\dfrac{1}{-1+x}}\)có nghĩa \(\Leftrightarrow\dfrac{1}{-1+x}>0\Leftrightarrow-1+x>0\Leftrightarrow x>1\)
vậy \(x>1\) thì \(\sqrt{\dfrac{1}{-1+x}}\) có nghĩa
3) \(\sqrt{\dfrac{2}{x^2}}\) có nghĩa \(\Leftrightarrow\dfrac{2}{x^2}>0\Leftrightarrow x^2>0\) nhưng \(x^2\ge0\forall x\) rồi \(\Rightarrow\) chỉ cần \(x\ne0\)
vậy \(x\ne0\) thì \(\sqrt{\dfrac{2}{x^2}}\) có nghĩa
4) \(\sqrt{\dfrac{-4}{x-3}}\) có nghĩa \(\Leftrightarrow\dfrac{-4}{x-3}>0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\)
vậy \(x< 3\) thì \(\sqrt{\dfrac{-4}{x-3}}\) có nghĩa
5) \(\sqrt{\dfrac{-5}{x^2+6}}\) có nghĩa \(\Leftrightarrow\dfrac{-5}{x^2+6}>0\Leftrightarrow x^2+6< 0\)
nhưng \(x^2\ge0\forall x\) \(\Rightarrow x^2+6\ge6>0\forall x\) vậy không thể thảo mảng \(x^2+6< 0\)
vậy \(\sqrt{\dfrac{-5}{x^2+6}}\) không tồn tại
1, có nghĩa với mọi x
2, -1+x >0=> x>1
3, x# 0
4,x-3<0 => x<3
5, ko có gt nào của x thỏa mãn .