\(\frac{9x^2-16}{3x^2-4x}\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2016

Để phân thức (9x2-16)/(3x2-4x) được xác định =>3x2-4x khác 0

=>3x(x-4/3) khác 0 

=>x khác 0,4/3

a,x thuộc R

x khác \(\frac{4}{3}\)và x khác 0 vì(1)

b,\(\frac{9x^2-16}{3x^2-4x}\)

\(=\frac{\left(3x\right)^2-4^2}{x\left(3x-4\right)}\)(1)

\(=\frac{\left(3x-4\right)\left(3x+4\right)}{x\left(3x-4\right)}\)

\(=\frac{3x+4}{x}\)

27 tháng 11 2018

a) \(B=\frac{9x^2-16}{3x^2-4x}=\frac{9x^2-16}{x.\left(3x-4\right)}\)

để B xác định => x.(3x-4) khác 0 => \(\hept{\begin{cases}x\ne0\\3x\ne4\end{cases}\Rightarrow\hept{\begin{cases}x\ne0\\x\ne\frac{4}{3}\end{cases}}}\)

b) \(B=\frac{9x^2-16}{3x^2-4x}=\frac{\left(3x\right)^2-4^2}{x.\left(3x-4\right)}=\frac{\left(3x-4\right).\left(3x+4\right)}{x.\left(3x-4\right)}=\frac{3x+4}{x}\)

29 tháng 6 2017

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

21 tháng 2 2020

ai giúp mình vớiiiii

21 tháng 2 2020

a, ĐKXĐ:

9x^2 - 16 ≠ 0

=> (3x - 4)(3x + 4) ≠ 0

=> 3x - 4 ≠ 0 và 3x + 4 ≠ 0

=> 3x  ≠ 4 và 3x ≠ -4

=> x ≠ 4/3 hoặc x ≠ -4/3

b, ĐKXĐ:

x^2 - 5x + 6 ≠ 0

=> x^2 - 2x - 3x + 6 ≠ 0

=> x(x - 2) - 3(x - 2) ≠ 0

=> (x - 3)(x - 2) ≠ 0

=> x - 3 ≠ 0 và x - 2 ≠ 0

=> x ≠ 3 và x ≠ 2

c, ĐKXĐ : 

x^2 - 4x + 4 ≠ 0

=> (x - 2)^2 ≠ 0

=> x - 2 ≠ 0

=> x ≠ 2

21 tháng 7 2021

Trả lời:

a, \(A=\frac{x^2-9}{x^2-6x+9}=\frac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2}=\frac{x+3}{x-3}\)

b, \(B=\frac{9x^2-16}{3x^2-4x}=\frac{\left(3x-4\right)\left(3x+4\right)}{x\left(3x-4\right)}=\frac{3x+4}{x}\)

c, \(C=\frac{x^2+4x+4}{2x+4}=\frac{\left(x+2\right)^2}{2\left(x+2\right)}=\frac{x+2}{2}\)

d, \(D=\frac{2x-x^2}{x^2-4}=\frac{x\left(2-x\right)}{\left(x-2\right)\left(x+2\right)}=-\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=-\frac{x}{x+2}\)

e, \(E=\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3}{x-2}\)

15 tháng 11 2017

A = 4x nha

15 tháng 11 2017

A=4x đúng đó

25 tháng 12 2018

\(a,\frac{3x^3+6x^2}{x^3+2x^2+x+2}=\frac{3x^2\left(x+2\right)}{x^2\left(x+2\right)+\left(x+2\right)}\)

\(=\frac{3x^2\left(x+2\right)}{\left(x+2\right)\left(x^2+1\right)}\)

\(\RightarrowĐKXĐ:x\ne-2\)

25 tháng 12 2018

\(b,\) Với \(x\ne-2\) thì :

\(\frac{3x^3+6x^2}{x^3+2x^2+x+2}=\frac{3x^2\left(x+2\right)}{\left(x+2\right)\left(x^2+1\right)}\)

\(=\frac{3x^2}{x^2+1}\)

Vì \(3x^2,\left(x^2+1\right)\ge0vs\forall x\)

\(\Rightarrow\frac{3x^2}{x^2+1}\ge0\)

Do đó : Giá trị của phân thức luôn không âm khi nó được xác định.

15 tháng 12 2016

a/ A=\(\frac{x\left(3x-1\right)}{\left(3x-1\right)^2}=\frac{x}{3x-1}\)

A xác định khi 3x-1 #0 <=> x khác 1/3

b/ x=8 => A=\(\frac{8}{3.8-1}=\frac{8}{23}\)

c/ A\(\le0\)Khi:

+/\(\hept{\begin{cases}x\ge0\\3x-1\le0\end{cases}}< =>0\le x\le\frac{1}{3}\)

+/ \(\hept{\begin{cases}x\le0\\3x-1\ge0\end{cases}}\)Không có giá trị x phù hợp

Vậy để A<0 <=> \(0\le x\le\frac{1}{3}\)

15 tháng 12 2016

a,\(\frac{3x^2-x}{9x^2-6x+1}=\frac{x\left(3x-1\right)}{\left(3x-1\right)^2}=\frac{x}{3x-1}\)

Vậy đk xác định của phân thức là \(x\ne\frac{1}{3}\)

b, Ta thay x=8

\(\frac{x}{3x-1}=\frac{8}{3.8-1}=\frac{8}{23}\)

c, x<0

\(\Rightarrow\frac{x}{3x-1}=-1\Leftrightarrow x=0,25\)

16 tháng 3 2020

câu 1

a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)

b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)

Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được

\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)

16 tháng 3 2020

c) Để phân thức trên có giá trị nguyên thì :

\(3⋮x-2\)

=>\(x-2\inƯ\left(3\right)=\left(\pm1\pm3\right)\)

=>\(x\in\left\{1,3,-1,5\right\}\)

zậy ....