Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo tính chất căn bậc 2:
\(A=\sqrt{x-4}-2\ge0-2=-2\)
Đẳng thức xảy ra khi x = 4
b) \(B=x-4\sqrt{x}+4+6=\left(\sqrt{x}-2\right)^2+6\ge6\)
Đẳng thức xảy ra khi \(\sqrt{x}=2\) hay x = 4
c) \(C=x-\sqrt{x}=x-2.\sqrt{x}.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\)
\(=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Đẳng thức xảy ra khi \(\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)
d)\(D=\sqrt{x^2-2x+1+3}+1=\sqrt{\left(x-1\right)^2+3}+1\ge\sqrt{3}+1\)
Đẳng thức xảy ra khi x = 1
a/ ĐKXĐ:...
\(E=\left(\frac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2+4\sqrt{x}\left(x-1\right)}{x-1}\right):\left(\frac{x-1}{\sqrt{x}}\right)\)
\(E=\left(\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1+4x\sqrt{x}-4\sqrt{x}}{x-1}\right).\frac{\sqrt{x}}{x-1}\)
\(E=\frac{4x^2}{\left(x-1\right)^2}\)
Bn ơi! Kia là chia \(\sqrt{x}-\frac{1}{\sqrt{x}}\) hay nhân z? Bn xem lại đề bài nhé! Theo mk là nhân thì nó sẽ ra kết quả ngắn gọn hơn nhìu :D
Bài 1:
a/ ĐKXĐ: \(x\ge2;x\ne11\)
b/ \(P=\frac{\left(x-5\right)\left(\sqrt{x-2}+\sqrt{3}\right)}{x-2-3}=\sqrt{x-2}+\sqrt{3}\)
c/ \(\sqrt{x-2}\ge0\forall x\in R\Rightarrow P=\sqrt{x-2}+\sqrt{3}\ge\sqrt{3}\forall x\in R\)
"="\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
1 ) \(A=\sqrt{x-2}+\sqrt{4-x}\)
ĐKXĐ : \(2\le x\le4\)
\(\Rightarrow A^2=x-2+4-x+2\sqrt{\left(x-2\right)\left(4-x\right)}=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)
Áp dụng bđt AM - GM ta có :
\(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\)
\(\Rightarrow A^2\le2+2=4\Rightarrow-2\le A\le2\)
Mà A > 0 nên ko thể có min = - 2 nên \(2\le x\le4\) ta chọn x = 2
=> A = \(\sqrt{2}\)
Vậy \(\sqrt{2}\le A\le2\)
b: \(A=\dfrac{P}{Q}=\dfrac{x+3}{\sqrt{x}-2}:\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{x+3}{\sqrt{x}}=\sqrt{x}+\dfrac{3}{\sqrt{x}}\ge2\sqrt{3}\)
Dấu '=' xảy ra khi \(x=3\)
Bài 1:
$\sqrt{x-4}-2$
ĐKXĐ: $x\geq 4$
Ta thấy $\sqrt{x-4}\geq 0$ với mọi $x\geq 4$
$\Rightarrow \sqrt{x-4}-2\geq 0-2=-2$
Vậy gtnn của biểu thức là $-2$. Giá trị này đạt được tại $x-4=0$
$\Leftrightarrow x=4$
Bài 2: $x-\sqrt{x}$
ĐKXĐ: $x\geq 0$
$x-\sqrt{x}=(x-\sqrt{x}+\frac{1}{4})-\frac{1}{4}=(\sqrt{x}-\frac{1}{2})^2-\frac{1}{4}$
$\geq 0-\frac{1}{4}=\frac{-1}{4}$
Vậy gtnn của biểu thức là $\frac{-1}{4}$. Giá trị này đạt được khi $\sqrt{x}-\frac{1}{2}=0$
$\Leftrightarrow x=\frac{1}{4}$