Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để x2 + 5x đạt giá trị âm thì 1 trong 2 số là âm và GTTĐ của số âm hơn GTTĐ của số tư nhiên
và x2 luôn tự nhiên => 5x âm
=> GTTĐ của x2 < GTTĐ của 5x
=> x < 5
=> x thuộc {4; 3; 2; 1;....}
Vậy....
Bài 1:
a) \(x^2+5x=x\left(x+5\right)< 0\) (1)
Nhận thấy: \(x< x+5\)
nên từ (1) \(\Rightarrow\) \(\hept{\begin{cases}x< 0\\x+5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 0\\x>-5\end{cases}}\)\(\Leftrightarrow\)\(-5< x< 0\)
Vậy.....
b) \(3\left(2x+3\right)\left(3x-5\right)< 0\)
TH1: \(\hept{\begin{cases}2x+3>0\\3x-5< 0\end{cases}}\)\(\Leftrightarrow\) \(\hept{\begin{cases}x>-\frac{3}{2}\\x< \frac{5}{3}\end{cases}}\)\(\Leftrightarrow\)\(-\frac{3}{2}< x< \frac{5}{3}\)
TH2: \(\hept{\begin{cases}2x+3< 0\\3x-5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< -\frac{3}{2}\\x>\frac{5}{3}\end{cases}}\) vô lí
Vậy \(-\frac{3}{2}< x< \frac{5}{3}\)
Bài 2:
a) \(2y^2-4y=2y\left(y-2\right)>0\)
TH1: \(\hept{\begin{cases}y>0\\y-2>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>0\\y>2\end{cases}}\)\(\Leftrightarrow\)\(y>2\)
TH2: \(\hept{\begin{cases}y< 0\\y-2< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< 0\\y< 2\end{cases}}\)\(\Leftrightarrow\)\(y< 0\)
Vậy \(\orbr{\begin{cases}y< 0\\y>2\end{cases}}\)
b) \(5\left(3y+1\right)\left(4y-3\right)>0\)
TH1: \(\hept{\begin{cases}3y+1>0\\4y-3>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>-\frac{1}{3}\\y>\frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y>\frac{3}{4}\)
TH2: \(\hept{\begin{cases}3y+1< 0\\4y-3< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< -\frac{1}{3}\\y< \frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y< -\frac{1}{3}\)
Vậy \(\orbr{\begin{cases}y>\frac{3}{4}\\y< -\frac{1}{3}\end{cases}}\)
\(3\left(2x+3\right)\left(3x-5\right)< 0\)
\(\Rightarrow\left(2x+3\right)\left(3x+5\right)< 0\)
Trường hợp 1: \(\Rightarrow\orbr{\hept{\begin{cases}2x+3< 0\\3x-5>0\end{cases}}}\Rightarrow\orbr{\hept{\begin{cases}x< \frac{-3}{2}\\x>\frac{5}{3}\end{cases}}}\)(Loại)
Trường hợp 2: \(\Rightarrow\orbr{\hept{\begin{cases}2x+3>0\\3x-5< 0\end{cases}}}\Rightarrow\orbr{\hept{\begin{cases}x>\frac{-3}{2}\\x< \frac{5}{3}\end{cases}}}\)
Vậy \(\frac{-3}{2}< x< \frac{5}{3}\) thì \(3\left(2x+3\right)\left(3x-5\right)< 0\)
bài 1:
\(\left(\frac{1}{2}-2\right).\left(\frac{1}{3}-x\right)>0\)
\(\Leftrightarrow\left(-\frac{3}{2}\right)\left(\frac{1}{3}-x\right)>0\)
Để biểu thức \(\left(\frac{1}{2}-2\right)\left(\frac{1}{3}-x\right)\) nhận giá trị dương thì \(-\frac{3}{2}\)và \(\frac{1}{3}-x\)phải cùng âm
\(\Leftrightarrow\frac{1}{3}-x< 0\)
\(\Leftrightarrow x>\frac{1}{3}\)
Vậy \(x>\frac{1}{3}\)thì biểu thức\(\left(\frac{1}{2}-2\right)\left(\frac{1}{3}-x\right)\) nhận giá trị dương
bài 2:
a)Để \(\frac{x^2-2}{5x}\) nhận giá trị âm thì x2-2<0 hoặc 5x<0
+)Nếu x2-2<0
=>x2<2
=>x<\(\sqrt{2}\)
+)Nếu 5x<0
=>x<0
Vậy x<\(\sqrt{2}\)hoặc x<0 thì biểu thức \(\frac{x^2-2}{5x}\)nhận giá trị âm
b)Để E nhận giá trị âm thì \(\frac{x-2}{x-6}\)nhận giá trị âm
=>x-2<0 hoặc x-6<0
+)Nếu x-2<0
=>x<2
+)Nếu x-6<0
=>x<6
Vậy x<2 hoặc x<6 thì biểu thức E nhận giá trị âm
Sorry tớ chưa học bạn ạ xin lỗi bạn nha ^_^
ko ghi lại đề nha !!!
D có giá trị âm khi
\(x^2-\frac{2}{5}x< 0\)
Cho \(x^2-\frac{2}{5}x=0\)
<=> x(x - 2/5) = 0
<=> \(\orbr{\begin{cases}x=0\\x-\frac{2}{5}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{5}\end{cases}}\)
Bảng xét dấu:
x y=x y=x-2/5 VT -oo 0 2/5 +oo 0 0 + + - + - - 0 0 + - +
Vậy: biểu thức D nhận giá trị âm khi \(x\in\left(0;\frac{2}{5}\right)\) ( có nghĩa là x sẽ bằng tất cả các số "từ lớn hơn 0 đến bé hơn 2/5 )
Chú ý: đây là cách giải của lớp 10 và 11 nếu em ko hiểu thì cx chịu chứ anh ko nhớ cách lớp 7
----câu E và F còn dễ hơn câu D này nữa nên em tự giải nha !!!!!!!
x2 + 5x < 0
x . ( x + 5 ) < 0
\(\Leftrightarrow\)x < 0
\(\Leftrightarrow\)x + 5 > 0
\(\Leftrightarrow\)x > - 5
- 5 < x < 0
\(\Rightarrow\)x \(\in\){ - 4 ; - 3 ; - 2 ; - 1 }
\(\Leftrightarrow\)x > 0
\(\Leftrightarrow\)x - 5 > 0
\(\Leftrightarrow\)x > 5
0 < x < 5
\(\Rightarrow\)x \(\in\){ 1 ; 2 ; 3 ; 4 }
Vậy ............
Cre : h.o.c247.net
\(\Rightarrow\)x2 + 5x < 0
\(\Rightarrow\)x( x + 5 ) < 0
\(\Leftrightarrow\)x < 0
\(\Leftrightarrow\)x + 5 > 0 \(\Rightarrow\)x > -5
\(\Rightarrow\)-5 < x < 0
\(\Rightarrow\)x = { -4 ; -3; -2; -1 }
\(\Leftrightarrow\)x < 0 \(\Leftrightarrow\)x - 5 < 0 \(\Leftrightarrow\)x < 5
0 < x < 5 \(\Rightarrow x\in\){ 1; 2; 3; 4 }