\(B=\frac{\sqrt{16-x^2}}{\sqrt{2x+1}}+\sqrt{x^2-8x+8}\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

giup minh voi        

14 tháng 7 2016

1) có nghĩa ↔5-2x >=0 ↔x<=5 phần 2                                                                                                                                            2)có nghĩa ↔(2-x)(2+x)>=0↔x<=2 hoặc x>=-2                                                                                                                              3) có nghĩa ↔(x-1)(x+1)>=0↔x>=1 hoặc x>=-1                                                                                                                            4)có nghĩa ↔4-3x >0↔x<4 phần 3                                                                                                                                                5)có nghĩa ↔1-2x>=0 và x>=1 hoặc x>=-1↔1<=x<=1 phần 2                                                                                                      6) có nghĩa ↔1-3x>0↔x<1 phần 3

17 tháng 8 2019

a) A có nghĩa\(\Leftrightarrow x-y\ne0\Leftrightarrow x\ne y\)

b) \(A=\frac{x+y-2\sqrt{xy}}{x-y}=\frac{\left(\sqrt{x-\sqrt{y}}\right)^2}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

NV
30 tháng 9 2020

ĐKXĐ:

a/ \(\left\{{}\begin{matrix}x-\sqrt{2x-1}>0\\2x-1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{2x-1}-1\right)^2>0\\x\ge\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2x-1}\ne1\\x\ge\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ge\frac{1}{2}\end{matrix}\right.\)

b/ \(\left\{{}\begin{matrix}16-x^2\ge0\\2x+1>0\\x^2-8x+8\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-4\le x\le4\\x>-\frac{1}{2}\\\left[{}\begin{matrix}x\ge4+2\sqrt{2}\\x\le4-2\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-\frac{1}{2}< x\le4-2\sqrt{2}\)

23 tháng 6 2018

\(1a.\) Để : \(\sqrt{x+\dfrac{3}{x}}+\sqrt{-3x}\) xác định thì :

\(x+\dfrac{3}{x}\) ≥ 0 và \(-3x\) ≥ 0

\(\dfrac{x^2+3}{x}\) ≥ 0 và : x ≤ 0 ⇔ x > 0 và : x ≤ 0 ( Vô lý )

⇔ x ∈ ∅

b. Để : \(\sqrt{x^2+4x+5}\) xác định thì :

\(x^2+4x+5\) ≥ 0

Mà : \(x^2+4x+5=\left(x+2\right)^2+1>0\)

Vậy , ........

c. Để : \(\sqrt{2x^2+4x+5}\) xác định thì :

\(2x^2+4x+5\) ≥ 0

Mà : \(2\left(x^2+2x+1\right)+3=2\left(x+1\right)^2+3>0\)

Vậy ,.........

Bài 2. \(a.x+5\sqrt{x}+6=x+2.\dfrac{5}{2}\sqrt{x}+\dfrac{25}{4}+6-\dfrac{25}{4}=\left(\sqrt{x}+\dfrac{5}{2}\right)^2-\dfrac{1}{4}=\left(\sqrt{x}+\dfrac{5}{2}-\dfrac{1}{2}\right)\left(\sqrt{x}+\dfrac{5}{2}+\dfrac{1}{2}\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\)

\(b.x+4\sqrt{x}+3=x+\sqrt{x}+3\sqrt{x}+3=\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}+1\right)=\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)\)

NV
23 tháng 9 2019

a/ \(1-16x^2\ge0\Rightarrow x^2\le16\Rightarrow-\frac{1}{4}\le x\le\frac{1}{4}\)

b/ \(\left\{{}\begin{matrix}x^2-3\ge0\\x^2-3\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{matrix}\right.\\x\ne\pm2\end{matrix}\right.\)

c/ \(8x-x^2-15\ge0\Rightarrow3\le x\le5\)

d/ Hàm số xác định với mọi x

e/ \(\left\{{}\begin{matrix}x\ge\frac{1}{2}\\x\ne1\end{matrix}\right.\)

f/ \(\left\{{}\begin{matrix}-4\le x\le4\\x>-\frac{1}{2}\\\left[{}\begin{matrix}x\ge4+\sqrt{2}\\x\le4-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow-\frac{1}{2}< x\le4-\sqrt{2}\)

16 tháng 10 2017

Câu 1) a) ĐKXĐ \(x\ge0,\)\(x\ne4\)A=\(\frac{x+2\sqrt{x}-4}{2\left(x-4\right)}\)b) Mình chưa làm được       Câu 2) a) ĐKXĐ \(x>0,\)\(x\ne4\)A=\(\frac{\sqrt{x}-1}{\sqrt{x}}\)b) Để a<\(\frac{1}{2}\)\(\Rightarrow\)\(\frac{\sqrt{x}-1}{\sqrt{x}}< \frac{1}{2}\)\(\Rightarrow x< 1\)\(\Rightarrow0< x< 1\)thỏa mãn bài toán    c) Ta có A=\(\frac{\sqrt{x}-1}{\sqrt{x}}=1-\frac{1}{\sqrt{x}}\), để A \(\in Z\)\(\Rightarrow\sqrt{x}\inƯ\left(1\right)\)\(\Rightarrow x=1\)( thỏa mãn ĐK)

10 tháng 8 2018

như lồn