\(A=\sqrt{9-x^2}+4\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2017

\(A=\sqrt{9-x^2}+4\)  Đạt Max khi \(\sqrt{9-x^2}\)đạt giá trị lớn nhất. Hay (9-x2) đạt giá trị lớn nhất.

Do x2 \(\ge\)0 với mọi x => để 9-x2 đạt giá trị lớn nhất thì x2 phải đạt GTNN => x2=0 => x=0

=> \(A_{max}=\sqrt{9}+4=3+4=7\)đạt được khi x=0

b/ \(B=6\sqrt{x}-x-15=-x+6\sqrt{x}-9-6=-6-\left(x-6\sqrt{x}+9\right)\)

=> \(B=-6-\left(\sqrt{x}-3\right)^2\)

Do \(\left(\sqrt{x}-3\right)^2\ge0\) Với mọi x => Để Bmax thì \(\left(\sqrt{x}-3\right)^2\) đạt Min => \(\left(\sqrt{x}-3\right)^2=0\)

=> Bmin=-6  đạt được khi \(\left(\sqrt{x}-3\right)^2=0\)hay x=9

15 tháng 8 2017

c/ \(C=2\sqrt{x}-x=1-1+2\sqrt{x}-x=1-\left(1-2\sqrt{x}+x\right)\)

=> \(C=1-\left(1-\sqrt{x}\right)^2\)  => Do \(\left(1-\sqrt{x}\right)^2\ge0\) Với mọi x => Để C đạt max thì \(\left(1-\sqrt{x}\right)^2\)đạt min => \(\left(1-\sqrt{x}\right)^2=0\) 

=> Cmin = 1 Đạt được khi x=1

4 tháng 2 2020

Tèn ten ! Tìm mãi mới thấy 1 bài hay !!

Bài làm : ( hay thì hay nhưng mk chỉ làm ngắn gọn thui !Ngại)

Ta có : 

\(x^2-2\sqrt{2}x+5+\left(x-\sqrt{2}\right)^2+3\ge3\)

\(\Rightarrow\frac{1}{x^2-2\sqrt{2}x+5}\le\frac{1}{3}\)

Do đó , khi \(x=\sqrt{2}\) thì biểu thức trên có giá trị lớn nhất là \(\frac{1}{3}\)

4 tháng 2 2020

Ta có: \(\frac{1}{x^2-2\sqrt{2}x+5}=\frac{1}{x^2-2x\sqrt{2}+2+3}=\frac{1}{\left(x-\sqrt{2}\right)^2+3}\)

Lại có: \(\left(x-\sqrt{2}\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)^2+3\ge3\forall x\)

\(\Leftrightarrow\frac{1}{\left(x-\sqrt{2}\right)^2+3}=\frac{1}{3}\)

Dấu " = " xảy ra thì biểu thức có \(Min=\frac{1}{3}\)

Khi đó: \(\left(x-\sqrt{2}\right)^2=0\)

\(\Leftrightarrow x-\sqrt{2}=0\)

\(\Leftrightarrow x=\sqrt{2}\)

Vậy ............

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)

22 tháng 7 2017

a) Phân thức nguyên 

<=> \(\sqrt{x}+1\)\(⋮\) \(2\sqrt{x}-3\)

<=> \(2\sqrt{x}+2\) \(⋮\) \(2\sqrt{x}-3\)

<=> \(2\sqrt{x}-3+5\)​ \(⋮\) \(2\sqrt{x}-3\)

<=> \(5\) \(⋮\) \(2\sqrt{x}-3\)

<=> \(2\sqrt{x}-3\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Ta có bảng sau :

\(2\sqrt{x}-3\)1             -1          5           -5          
x4116    !!!

b) Có :

\(\frac{x+2007}{x}=1+\frac{2007}{x}\)

Phân thức nguyên 

<=> \(x\inƯ\left(2007\right)\)

 
4 tháng 6 2018

b)\(C=\frac{5x-19}{x-4}=\frac{5x-20+1}{x-4}=\frac{5\left(x-4\right)+1}{x-4}=5+\frac{1}{x-4}\)

Để C đạt giá trị nhỏ nhất => 1/x-5 phải đạt giá trị nhỏ nhất

=> 1/x-5=-1

=>x-5=-1

=>x=4

Giá trị nhỏ nhất của C là : 5 - 1 = 4 <=> x = 4

24 tháng 6 2017

Phân thức đại số