K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2021

1)ĐK:`4x^2-12x+9>0`

`<=>(2n-3)^2>0`

`<=>2n-3 ne 0`

`<=>n ne 3/2`

`d)x^2-x+1`

`=(x-1/2)^2+3/4>0AAx`

`=>` bt xd `AAx in RR`

e)ĐK:`x^2-8x+15>0`

`<=>x^2-3x-5x+15>0`

`<=>x(x-3)-5(x-3)>0`

`<=>(x-3)(x-5)>0`

`TH1:` \(\begin{cases}x-3>0\\x-5>0\\\end{cases}\)

`<=>` \(\begin{cases}x>3\\x>5\\\end{cases}\)

`<=>x>5`

`TH2:` \(\begin{cases}x-3<0\\x-5<0\\\end{cases}\)

`<=>` \(\begin{cases}x<3\\x<5\\\end{cases}\)

`<=>x<3`

f)ĐK:`3x^2-7x+20>0`

`<=>x^2-2x+1+2x^2-5x+19>0`

`<=>(x-1)^2+2(x-5/2)^2+13/2>0` luôn đúng

25 tháng 6 2021

online 24/24 :>

19 tháng 6 2019

Biểu thức có nghĩa khi :

a) \(\frac{2019}{x^2}\ge0\)( luôn đúng )

b) \(x^4+1\ge0\)( luôn đúng )

c) \(\frac{x^2+1}{1-2x}\ge0\Leftrightarrow1-2x>0\Leftrightarrow x< \frac{1}{2}\)

d) \(x^2-9\ge0\Leftrightarrow x^2\ge9\Leftrightarrow\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

e) \(4-x^2\ge0\Leftrightarrow x^2\le4\Leftrightarrow-2\le x\le2\)

f) \(\left(3-5x\right)\left(x-6\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3-5x\ge0\\x-6\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}3-5x\le0\\x-6\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le\frac{3}{5}\\x\ge6\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\frac{3}{5}\\x\le6\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}6\le x\le\frac{3}{5}\left(l\right)\\\frac{3}{5}\le x\le6\left(c\right)\end{matrix}\right.\)

g)h)i)k)l) tương tự, nhiều quá

19 tháng 6 2019

Cảm ơn bạn nha

AH
Akai Haruma
Giáo viên
1 tháng 9 2019

a) ĐK: $x\geq 0$

\(A=2x-6\sqrt{x}-1=2(x-3\sqrt{x}+\frac{3^2}{2^2})-\frac{11}{2}\)

\(=2(\sqrt{x}-\frac{3}{2})^2-\frac{11}{2}\geq \frac{-11}{2}\)

Vậy GTNN của $A$ là $\frac{-11}{2}$. Giá trị này đạt được tại \((\sqrt{x}-\frac{3}{2})^2=0\Leftrightarrow x=\frac{9}{4}\)

b) Không đủ căn cứ để tìm min- max

c)

\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}=\sqrt{(2x-1)^2}+\sqrt{(2x-3)^2}\)

\(=|2x-1|+|2x-3|\)

Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:

\(E=|2x-1|+|3-2x|\geq |2x-1+3-2x|=2\)

Vậy $E_{\min}=2$. Giá trị này đạt tại $(2x-1)(3-2x)\geq 0$

$\Leftrightarrow \frac{1}{2}\leq x\leq \frac{3}{2}$

AH
Akai Haruma
Giáo viên
1 tháng 9 2019

d) ĐKXĐ: \(\frac{7}{2}\leq x\leq \frac{5}{2}\) (vô lý)

e)

\(A=-3x+6\sqrt{x}+3=6-3(x-2\sqrt{x}+1)=6-3(\sqrt{x}-1)^2\)

\(\leq 6\) do $(\sqrt{x}-1)^2\geq 0$ với mọi $x\geq 0$)

Vậy $A_{\max}=6$. Giá trị này xác định tại $(\sqrt{x}-1)^2=0\Leftrightarrow x=1$

f) ĐK: $x\geq 4$

\(E^2=4x-7-2\sqrt{(2x+1)(2x-8)}\)

Với mọi $x\geq 4$ thì:

\(2x+1> 2x-8\Rightarrow (2x+1)(2x-8)\geq(2x-8)^2\)

\(\Rightarrow E^2\leq 4x-7-2\sqrt{(2x-8)^2}=4x-7-2(2x-8)=9\)

$\Rightarrow E\leq 3$

Vậy $E_{\max}=3$ khi $2x-8=0\Leftrightarrow x=4$

a: \(\Leftrightarrow10x^2+17x+3-4x+17=0\)

\(\Leftrightarrow10x^2+13x+20=0\)

\(\text{Δ}=13^2-4\cdot10\cdot20=-631< 0\)

Do đó: Phương trình vô nghiệm

b: \(\Leftrightarrow x^2+7x-3=x^2-x-1\)

=>8x=2

hay x=1/4

c: \(\Leftrightarrow2x^2-5x-3=x^2-1+3=x^2+2\)

\(\Leftrightarrow x^2-5x-5=0\)

\(\text{Δ}=\left(-5\right)^2-4\cdot1\cdot\left(-5\right)=25+20=45>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{5-3\sqrt{5}}{2}\\x_2=\dfrac{5+3\sqrt{5}}{2}\end{matrix}\right.\)

1 tháng 8 2017

a) Để \(\sqrt{\dfrac{3}{x-5}}\) có nghĩa thì :

\(\dfrac{3}{x-5}\ge0\) mà 3 > 0 nên => x - 5 > 0 <=> x > 5

b) Để \(\sqrt{\dfrac{x-3}{x+5}}\) có nghĩa thì :

\(\dfrac{x-3}{x+5}\ge0\) ; x \(\ne-5\)

Ta có bảng xét dấu :

x x-3 x+5 (x-3)/(x+5) -5 3 0 0 0 - - + - + + + - +

=> x \(\le-5\) Hoặc x \(\ge3\)

c) Để \(A=\sqrt{x-3}-\sqrt{\dfrac{1}{4-x}}\) có nghĩa thì :

x - 3 \(\ge\) 0 <=> x \(\ge3\)

\(\dfrac{1}{4-x}\ge0\) mà 1 > 0 nên => 4 - x > 0 <=> x < 4

d) Để \(B=\dfrac{1}{\sqrt{x-1}}+\dfrac{2}{\sqrt{x^2-4x+4}}\) = \(\dfrac{1}{\sqrt{x-1}}+\dfrac{2}{\sqrt{\left(x-2\right)^2}}\) có nghĩa thì :

\(x-1\ge0< =>x\ge1\)

\(\dfrac{2}{\left|x-2\right|}\ge0\) Mà 2 > 0 nên => | x - 2 | >0 <=> x -2 \(\ge\) 0 <=> x \(\ge2\)

e) \(\text{Đ}\text{ể}:C=\sqrt{\dfrac{-3}{x-5}}\) có nghĩa thì :

\(\dfrac{-3}{x-5}\ge0\)

Mà -3 < 0 nên => x -5 < 0 <=> x < 5

F) Để \(D=3+\sqrt{x^2-9}\) có nghĩa thì :

\(\sqrt{x^2-9}=\sqrt{\left(x+3\right)\left(x-3\right)}< =>\left(x+3\right)\left(x-3\right)\ge0\)

Ta có bảng xét dấu :

x x+3 x-3 tích 0 0 0 0 - + + - - + -3 3 + - +

=> x \(\le-3\) Hoặc x \(\ge3\)

g) Để \(E=\dfrac{1}{1-\sqrt{x-1}}\) có nghĩa thì :

x -1 \(\ge0\) mà 1 > 0 nên => x - 1 > 0 <=> x > 1

h) Để H = \(\sqrt{x^2+2x+3}=\sqrt{\left(x+2\right)\left(x+3\right)}\) có nghĩa thì :

( x + 2)(x + 3) \(\ge0\)

Ta có bảng xét dấu :

x x+2 x+3 tích -3 -2 0 0 0 0 - - + - + + + - +

=> \(x\le-3\) Hoặc x \(\ge-2\)

1 tháng 8 2017

a )\(\dfrac{\sqrt{3}}{x-5}\)

\(\sqrt{3}\) > 0

<=> x-5 >0

=>x > 5

28 tháng 11 2019

Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen

help me, pleaseee

Cần gấp lắm ạ!