K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2016

Với mọi x thì A= |x+5/8 \(\ge\)0 .

Dấu ''='' xảy ra khi và chỉ khi x+5/8= o \(\Leftrightarrow\)x= -5/8.

Vậy GTNN (A)= 0 khi x= -5/8.

24 tháng 8 2016

Ta có:

\(A=\left|x+\frac{5}{8}\right|\ge0\)

Dấu "=" xảy ra khi và chỉ khi x = -5/8

Vậy Min A = 0 khi và chỉ khi x = -5/8

Có lẽ đây là bài toán GTNN  lớp 6 thì đúng hơn!

19 tháng 2 2020

Nguyễn Thị Anh Đào à nếu bạn giải được thì giải giúp mình đi

5 tháng 8 2018

a)\(A=12-\left|x-3\right|-\left|y+7\right|\)

\(-\left|x-3\right|\le0;-\left|y+7\right|\le0\)

\(\Rightarrow A\le12-0-0=12\)

Vậy Max A = 12 <=> x = 3 ; y = -7

b)\(B=-\left(x-2018\right)^6-1\)

\(-\left(x-2018\right)^6\le0\)

\(B\le0-1=-1\)

Vậy Max B = -1 <=> x = 2018

5 tháng 8 2018

a)  \(A=12-\left|x-3\right|-\left|y+7\right|\)

Nhận thấy: \(\left|x-3\right|\ge0;\)\(\left|y+7\right|\ge0\)

suy ra:  \(A=12-\left|x-3\right|-\left|y+7\right|\le12\)

Vậy MIN A = 12

Dấu "=" xảy ra <=> \(x=3;y=-7\)

b) \(B=-\left(x-2018\right)^6-1\)

Nhận thấy:  \(\left(x-2018\right)^6\ge0\)

suy ra:  \(B=-\left(x-2018\right)^2-1\le-1\)

Vậy MIN B = -1

Dấu "=" xảy ra  <=>   \(x=2018\)

c) \(C=\frac{20}{7}-\left|x+8\right|-\left(3y+7\right)^{2016}\)

Nhận thấy:  \(\left|x+8\right|\ge0\)    \(\left(3y+7\right)^{2016}\ge0\)

suy ra:  \(C=\frac{20}{7}-\left|x+8\right|-\left(3y+7\right)^{2016}\le\frac{20}{7}\)

Vậy MIN  C = 20/7

Dấu "=" xảy ra <=>  \(x=-8;y=-\frac{7}{3}\)

26 tháng 2 2018

Có |x| >= 0

=> |x|-3 >= -3

=> 6/|x|-3 >= 6/-3 = -2

Dấu "=" xảy ra <=> x=0

Vậy ..............

Tk mk nha

đề bài này sai thì phải. Tìm GTLN mới lm đc

23 tháng 8 2021

Ta có : \(|x-1|\ge0=>-\frac{2}{5}|x-1|\le0\)

\(=>-\frac{2}{5}|x-1|+1\le1\)

Dấu "=" xảy ra \(< =>x=1\)

Vậy Max A = 1 khi x = 1

3 tháng 8 2017

a) với x>1/2   => bt=x-1/2+3/4-x=...

với x<1/2 => bt=1/2-x+3/4-x=...

b)tự làm nha cưng

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak

28 tháng 8 2016

a) \(A=\left|x-\frac{2}{3}\right|-4\)

Có: \(\left|x-\frac{2}{3}\right|\ge0\)

\(\Rightarrow\left|x-\frac{2}{3}\right|-4\ge-4\)

Dấu '=' xảy ra khi: \(\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)

Vậy: \(Min_A=-4\) tại \(x=\frac{2}{3}\)  ( K có GTLN bạn nhé )

b) \(B=2-\left|x+\frac{5}{6}\right|\) . Có: \(\left|x+\frac{5}{6}\right|\ge0\)

\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)

Dấu '=' xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)

Vậy:  \(Max_B=2\) tại \(x=-\frac{5}{6}\)

  \(C=-\left|x+\frac{2}{3}\right|-4\). Có: \(-\left|x+\frac{2}{3}\right|\le0\)

\(\Rightarrow-\left|x+\frac{2}{3}\right|-4\le-4\)

Dấu '=' xảy ra khi: \(-\left|x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{2}{3}\)

Vậy: \(Max_C=-4\) tại \(x=-\frac{2}{3}\)