\(\dfrac{x-2}{4}\)=5

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2024

Để \(A=5\) thì \(\dfrac{x-2}{4}=5\)

\(\Leftrightarrow x-2=20\)

\(\Leftrightarrow x=22\)

Vậy để \(A=5\) thì \(x=22\).

16 tháng 1 2018

sai đề

14 tháng 12 2018

a) P xác định \(\Leftrightarrow\hept{\begin{cases}x\ne0\\x+5\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}}\)

Vậy P xác định \(\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)

b) \(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)

\(P=\frac{x\left(x+2\right)}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)

\(P=\frac{x^2\left(x+2\right)}{2x\left(x+5\right)}+\frac{\left(x-5\right)\left(x+5\right)2}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)

\(P=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)

\(P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)

Có: \(P=0\)

\(\Rightarrow P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=0\Leftrightarrow x\left(x^2+4x-5\right)=0\Leftrightarrow x^2+4x-5=0\)

\(\Leftrightarrow\left(x^2-x\right)+\left(5x-5\right)=0\)

\(\Leftrightarrow x\left(x-1\right)+5\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)

Vậy \(P=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)

11 tháng 12 2022

a: ĐKXĐ: x<>-3; x<>2

b: \(A=\dfrac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}=\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\dfrac{x-4}{x-2}\)

c: Để \(A=\dfrac{-3}{4}\) thì \(\dfrac{x-4}{x-2}=\dfrac{-3}{4}\)

=>-3x+6=4x-16

=>-7x=-22

=>x=22/7

a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5

=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5

=(x-2)/(2x^2-5x+5)(x-1)

 

14 tháng 6 2018

chỗ đó mk nhầm, sorry bn nha

Để F ∈ Z

\(\Leftrightarrow\dfrac{9}{x+3}\in Z\Leftrightarrow9⋮x+3\)

\(\Leftrightarrow x+3\inƯ\left(9\right)=\left\{1;-1;9;-9;3;-3\right\}\)

x+3 1 -1 3 -3 9 -9
x -2 -4 0 -6 6 -12

(t/m)

Vậy..............

a: \(P=\dfrac{x^2-4-x^2+3}{x\left(x-2\right)}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{5}\)

\(=\dfrac{-x-2}{5x}\)

b: Để P=x2 thì \(5x^3+x+2=0\)

hay \(x\in\left\{-0.65\right\}\)

c: Để |P|<P thì \(x\in\varnothing\)

17 tháng 1 2018

\(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\) ( Chữa đề nhé.)

a) \(ĐKXĐ:x\ne-3;x\ne2\)

\(\text{Với }x\ne-3;x\ne2,\text{ ta có: }A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\\ =\dfrac{x+2}{x+3}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{1}{x-2}\\ =\dfrac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{x+3}{\left(x-2\right)\left(x+3\right)}\\ =\dfrac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}\\ =\dfrac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\\ =\dfrac{\left(x+3\right)\left(x-4\right)}{\left(x-2\right)\left(x+3\right)}\\ =\dfrac{x-4}{x-2}\\ \text{Vậy }A=\dfrac{x-4}{x-2}\text{ với }x\ne-3;x\ne2\)

b) Lập bảng xét dấu:

x x-4 x-2 x-4 2 4 0 0 x-2 _ _ + _ + + 0 + _ +

\(\Rightarrow\left[{}\begin{matrix}x< 2\\x>4\end{matrix}\right.\)

Vậy để \(A>0\) thì \(x< 2\) hoặc \(x>4\)

c) \(\text{Với }x\ne-3;x\ne2\)

\(\text{Ta có : }A=\dfrac{x-4}{x-2}=\dfrac{x-2-2}{x-2}\\ =\dfrac{x-2}{x-2}-\dfrac{2}{x-2}=1-\dfrac{2}{x-2}\)

\(\Rightarrow\) Để A nhận giá trị nguyên

thì \(\Rightarrow\dfrac{2}{x-2}\in Z\)

\(\Rightarrow2⋮x-2\\ \Rightarrow x-2\inƯ_{\left(2\right)}\)

\(Ư_{\left(2\right)}=\left\{\pm1;\pm2\right\}\)

Lập bảng giá trị:

\(x-2\) \(-2\) \(-1\) \(1\) \(2\)
\(x\) \(0\left(TM\right)\) \(1\left(TM\right)\) \(3\left(TM\right)\) \(4\left(TM\right)\)

\(\Rightarrow x\in\left\{-2;-1;1;2\right\}\)

Vậy với \(x\in\left\{-2;-1;1;2\right\}\)

thì \(A\in Z\)

17 tháng 1 2018

Câu 2:

a) \(ĐKXĐ:x\ne\dfrac{3}{2};x\ne1\)

\(\text{Với }x\ne\dfrac{3}{2};x\ne1,\text{ ta có : }B=\left(\dfrac{2x}{2x^2-5x+3}-\dfrac{5}{2x-3}\right):\left(3+\dfrac{2}{1-x}\right)\\ =\left[\dfrac{2x}{\left(2x-3\right)\left(x-1\right)}-\dfrac{5\left(x-1\right)}{\left(2x-3\right)\left(x-1\right)}\right]:\left(\dfrac{3\left(1-x\right)}{1-x}+\dfrac{2}{1-x}\right)\\ =\dfrac{2x-5x+5}{\left(2x-3\right)\left(x-1\right)}:\dfrac{3-3x+2}{\left(1-x\right)}\\ =\dfrac{\left(-3x+5\right)\cdot\left(1-x\right)}{\left(2x-3\right)\left(x-1\right)\cdot\left(-3x+5\right)}\\ =-\dfrac{1}{2x-3}\)

Vậy \(B=-\dfrac{1}{2x-3}\) với \(x\ne\dfrac{3}{2};x\ne1\)

b) \(\text{Với }x\ne\dfrac{3}{2};x\ne1\)

Để \(B=\dfrac{1}{x^2}\)

\(\text{thì }\Rightarrow\dfrac{-1}{2x-3}=\dfrac{1}{x^2}\\ \Rightarrow2x-3=-x^2\\ \Leftrightarrow2x-3+x^2=0\\ \Leftrightarrow x^2-3x+x-3=0\\ \Leftrightarrow\left(x^2-3x\right)+\left(x-3\right)=0\\ \Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\left(TM\right)\)

Vậy với \(x=-1;x=3\) thì \(B=\dfrac{1}{x^2}\)

21 tháng 4 2017

a) −x2+21−5x−x2+21−5x =x2+2−(1−5x)=x2+2−(1−5x) =x2+25x−1=x2+25x−1;

b) −4x+15−x−4x+15−x =4x+1−(5−x)=4x+1−(5−x) =4x+1x−5


25 tháng 11 2018

a)\(-\dfrac{x^2+2}{1-5x}=\dfrac{x^2+2}{-\left(1-5x\right)}=\dfrac{x^2+2}{5x-1}\)

b)\(-\dfrac{4x+1}{5-x}=\dfrac{4x+1}{-\left(5-x\right)}=\dfrac{4x+1}{x-5}\)

25 tháng 6 2018

\(1.\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}}{\sqrt{2}}=\dfrac{\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}=\dfrac{|\sqrt{7}+1|-|\sqrt{7}-1|}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)

\(3a.x+1-\dfrac{x-1}{3}< x-\dfrac{2x+3}{2}+\dfrac{x}{3}+5\)

\(\Leftrightarrow\dfrac{6\left(x+1\right)-2\left(x-1\right)}{6}< \dfrac{6x-3\left(2x+3\right)+2x+30}{6}\)

\(\Leftrightarrow6x+6-2x+2< 6x-6x-9+2x+30\)

\(\Leftrightarrow6x-2x-2x+6+2+9-30< 0\)

\(\Leftrightarrow2x-13< 0\)

\(\Leftrightarrow x< \dfrac{13}{2}\)

KL...............

\(b.5+\dfrac{x+4}{5}< x-\dfrac{x-2}{2}+\dfrac{x+3}{3}\)

\(\Leftrightarrow\dfrac{150+6\left(x+4\right)}{30}< \dfrac{30x-15\left(x-2\right)+10\left(x+3\right)}{30}\)

\(\Leftrightarrow150+6x+24< 30x-15x+30+10x+30\)

\(\Leftrightarrow6x-30x+15x-10x+150+24-30-30< 0\)

\(\Leftrightarrow-19x+114< 0\)

\(\Leftrightarrow x>6\)

KL..................

25 tháng 6 2018

Câu 4 :

Ta có :

\(A=\dfrac{3}{1-x}+\dfrac{4}{x}\)

\(=\left(\dfrac{3}{1-x}+\dfrac{4}{x}\right)\left[\left(1-x\right)+x\right]\)

Theo BĐT Bu - nhi a - cốp xki ta có :

\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

\(\Leftrightarrow\left(\dfrac{3}{1-x}+\dfrac{4}{x}\right)\left[\left(1-x\right)+x\right]\ge\left(\sqrt{\dfrac{3\left(1-x\right)}{1-x}}+\sqrt{\dfrac{4x}{x}}\right)^2=\left(\sqrt{3}+2\right)^2=7+4\sqrt{3}\)

Dấu \("="\) xảy ra khi \(\dfrac{3}{\left(1-x\right)^2}=\dfrac{4}{x^2}\)

\(\Leftrightarrow3x^2=4x^2-8x+4\)

\(\Leftrightarrow x^2-8x+4=0\)

\(\Delta=64-16=48>0\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=4+2\sqrt{3}\\x_2=4-2\sqrt{3}\end{matrix}\right.\)

Vậy GTNN của\(A=7+4\sqrt{3}\) khi \(\left[{}\begin{matrix}x_1=4+2\sqrt{3}\\x_2=4-2\sqrt{3}\end{matrix}\right.\)