Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3x-1}{x-1}=\frac{3\left(x-1\right)+2}{x-1}=3+\frac{2}{x-1}\)
\(B=\frac{2x^2+x-1}{x+2}=\frac{\left(x+2\right)\left(2x-3\right)+5}{x+2}=2x-3+\frac{5}{x+2}\)
Để A,B đều là số nguyên thì \(x-1\in\left\{1;2;-1;-2\right\}\) và \(x+2\in\left\{1;5;-1;-5\right\}\)
Bạn tự làm nốt
a)\(|x-5|\le2\Leftrightarrow\orbr{\begin{cases}x-5\le2\\x-5\ge2\end{cases}\Leftrightarrow\orbr{\begin{cases}x\le7\\x\ge3\end{cases}}}\)
b)\(\left(x^2-20\right)\left(x^2-15\right)\left(x^2-10\right)\left(x^2-5\right)< 0\Leftrightarrow\left(x^4-25x^2+100\right)\left(x^4-25x^2+150\right)< 0\\\)
bạn lm như thường nha
mk lười nhập quá
Ta có: \(x^{1890};y^{2020}>0\) với mọi x; y khác 0
a) \(\left(19t+\frac{5}{t}\right)x^{1890}y^{2020}\) dương với mọi x ; y khác 0
khi \(19t+\frac{5}{t}>0\)
<=> \(\frac{19t^2+5}{t}>0\)
<=> t > 0
vì 19t^2 + 5 > 0 với mọi t
b) \(\left(19t+\frac{5}{t}\right)x^{1890}y^{2020}\) âm với mọi x ; y khác 0
khi \(19t+\frac{5}{t}< 0\)
<=> \(\frac{19t^2+5}{t}< 0\)
<=> t < 0
vì 19t^2 + 5 > 0 với mọi t
Đkxđ : t > 0
\(\left(19t+\frac{5}{t}\right)x^{1890}y^{2020}\)
a) Ta có : \(x^{1890}\ge0\forall x\); \(y^{2020}\ge0\forall y\)
Để đơn thức dương => \(19t+\frac{5}{t}>0\)
=> t > 0
=> t thuộc N*
b) Ta có :\(x^{1890}\ge0\forall x\); \(y^{2020}\ge0\forall y\)
Để đơn thức âm => \(19t+\frac{5}{t}< 0\)
=> t < 0
=> t thuộc Z
a: Khi x=1/4 thì \(A=\left(\dfrac{1}{2}-5\right):\left(\dfrac{1}{2}+3\right)=\dfrac{-9}{2}:\dfrac{7}{2}=\dfrac{-9}{7}\)
b: Để A là số nguyên thì \(\sqrt{x}+3-8⋮\sqrt{x}+3\)
\(\Leftrightarrow\sqrt{x}+3\in\left\{4;8\right\}\)
hay \(x\in\left\{1;25\right\}\)
Hai luỹ thừa có cơ số giống nhau, số mũ khác nhau mà bằng nhau => cơ số là 1 hoặc -1
Ta có:
x - 1 = 1
x = 1 + 1
x = 2
Hoặc
x - 1 = -1
x = -1 + 1
x = 0
Vậy, x = 1 hoặc 0
ta có: \(x:y:z:t=2:3:4:5\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\)
ADTCDTSBN
có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=\frac{-42}{14}=-3\)
=>...
bn tự làm tiếp nha
Ta có : X:Y:Z:T=2:3:4:5 =>\(\frac{X}{2}\)=\(\frac{Y}{3}\)=\(\frac{Z}{4}\)=\(\frac{T}{5}\)
= \(\frac{X+Y+Z+T}{2+3+4+5}\)=\(\frac{-42}{14}\)=-3
=> X =-6;Y=-9;Z=-12;T=-15
Để A là số nguyên thì x-5+7 chia hết cho x-5
=>x-5 thuộc {1;-1;7;-7}
=>x thuộc {6;4;12;-2}