Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
a) x2 + 4y2 + 4xy - 16
=(x2 + 4xy + 4y2) - 16
=(x+2y)2 - 16
=(x+2y-4)(x+2y+4)
b)x2 + y2 - 2x + 4y + 5 =0
<=> x2 - 2x + 1 + y2 - 4y + 4=0
<=> (x-1)2 + (y-2)2 =0
<=> x=1 và y=2
a, \(A=\left(\frac{x}{x+3}+\frac{x}{x-3}-\frac{2}{x^2-9}\right)\frac{x+3}{2x-2}\)
\(=\left(\frac{x\left(x-3\right)+x\left(x+3\right)-2}{\left(x+3\right)\left(x-3\right)}\right)\frac{x+3}{2x-2}\)
\(=\frac{x^2-3x+x^2+3x-2}{\left(x-3\right)\left(x+3\right)}\frac{x+3}{2\left(x-1\right)}=\frac{2x^2-2}{2\left(x-3\right)\left(x-1\right)}\)
\(=\frac{2\left(x-1\right)\left(x+1\right)}{2\left(x-3\right)\left(x-1\right)}=\frac{x+1}{x-3}\)
Ta co A = 2 hay \(\frac{x+1}{x-3}=2\)ĐK : \(x\ne3\)
\(\Rightarrow x+1=2x-6\Leftrightarrow-x=-7\Leftrightarrow x=7\)
Vậy với x = 7 thì A = 2
b, Ta có A < 0 hay \(\frac{x+1}{x-3}< 0\)
TH1 : \(\hept{\begin{cases}x+1< 0\\x-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -1\\x>3\end{cases}}}\)vô lí
TH2 : \(\hept{\begin{cases}x+1>0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 3\end{cases}\Leftrightarrow-1< x< 3}}\)
a, \(A=\left(\frac{x}{x+3}+\frac{x}{x-3}-\frac{2}{x^2-9}\right).\frac{x+3}{2x-2}\)
\(=\frac{x^2-3x+x^2+3x-2}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{2\left(x-1\right)}=\frac{2\left(x-1\right)\left(x+1\right)\left(x+3\right)}{2\left(x-1\right)\left(x-3\right)\left(x+3\right)}=\frac{x+1}{x-3}\)
Ta có : A = 2 hay \(\frac{x+1}{x-3}=2\Rightarrow x+1=2x-6\Leftrightarrow-x=-7\Leftrightarrow x=7\)(tmđk )
b, \(A< 0\Rightarrow\frac{x+1}{x-3}< 0\)
TH1 : \(\hept{\begin{cases}x+1< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>3\end{cases}}}\)( vô lí )
TH2 : \(\hept{\begin{cases}x+1>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x< 3\end{cases}\Rightarrow-1< x< 3}}\)
Kết hợp với đk ta được -1 < x < 3 ; x khác 1
\(a,ĐKXĐ:\hept{\begin{cases}x-1\ne0\\x+1\ne0\end{cases}\Leftrightarrow x\ne\pm1}\)
\(b,A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{1}{x+1}+\frac{x}{1-x}+\frac{2}{x^2-1}\right)\)
\(=\frac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}:\frac{x-1-x\left(x+1\right)+2}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{x-1-x^2-x+2}\)
\(=\frac{4x}{1-x^2}\)
\(c,A\ge0\Leftrightarrow\frac{4x}{1-x^2}\ge0\)
\(\Leftrightarrow\hept{\begin{cases}4x\ge0\\1-x^2\ge0\end{cases}\left(h\right)\hept{\begin{cases}4x\le0\\1-x^2\le0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge0\\x^2\le1\end{cases}\left(h\right)\hept{\begin{cases}x\le0\\x^2\ge1\end{cases}}}\)
\(\Leftrightarrow0\le x\le1\left(h\right)x\le-1\)
Vậy ///////
P=x3+2x2-2x2-10x+10x+50+50-5x / 2x(x+5)
=x3+100-5x / 2x2+10x
=x3+100-1 / 2x2+2
đây là câu a nha ban mih ko ghi lai cái đề
Ta có : \(A=1-\frac{2x+3}{2}=\frac{2-2x-3}{2}=\frac{-2x-1}{2}\)
Để A < 0 thì : \(\frac{-2x-1}{2}< 0\)hay \(-2x-1< 0\)<=> -2x < 1 <=> x > \(-\frac{1}{2}\)
Vậy với x > \(-\frac{1}{2}\)Thỏa mãn điều kiện đề bài
Ta có :
\(A< 0\)
\(\Leftrightarrow\)\(1-\frac{2x+3}{2}< 0\)
\(\Leftrightarrow\)\(\frac{2x+3}{2}>1\)
\(\Leftrightarrow\)\(2x+3>2\)
\(\Leftrightarrow\)\(2x>-1\)
\(\Leftrightarrow\)\(x>\frac{-1}{2}\)
Vậy để \(A< 0\) thì \(x>\frac{-1}{2}\)
Chúc bạn học tốt ~