![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 M=x3+x2y−2x2−xy−y2+3y+x−1M=x3+x2y−2x2−xy−y2+3y+x−1
M=x3+x2y−2x2−xy−y2+(2y+y)+x−(−2+1)M=x3+x2y−2x2−xy−y2+(2y+y)+x−(−2+1)
M=(x3+x2y−2x2)−(xy+y2−2y)+(x+y−2)+1M=(x3+x2y−2x2)−(xy+y2−2y)+(x+y−2)+1
M=(x2.x+x2.y−2x2)−(x.y+y.y−2y)+(x+y−2)+1M=(x2.x+x2.y−2x2)−(x.y+y.y−2y)+(x+y−2)+1
M=x2.(x+y−2)−y.(x+y−2)+(x+y−2)+1M=x2.(x+y−2)−y.(x+y−2)+(x+y−2)+1
M=x2.0+y.0+0+1M=x2.0+y.0+0+1
M=1M=1
N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−2N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−2
N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−(−4+2)N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−(−4+2)
N=(x3+x2y−2x2)−(x2y+xy2−2xy)+(2x+2y−4)+2N=(x3+x2y−2x2)−(x2y+xy2−2xy)+(2x+2y−4)+2
N=(x2x+x2y−2x2)−(xyx+xyy−2xy)+(2x+2y−4)+2N=(x2x+x2y−2x2)−(xyx+xyy−2xy)+(2x+2y−4)+2
N=x2(x+y−2)−xy(x+y−2)+2(x+y−2)+2N=x2(x+y−2)−xy(x+y−2)+2(x+y−2)+2
N=x2.0−xy.0+2.0+2N=x2.0−xy.0+2.0+2
N=2N=2
P=x4+2x3y−2x3+x2y2−2x2y−x(x+y)+2x+3P=x4+2x3y−2x3+x2y2−2x2y−x(x+y)+2x+3
P=(x4+x3y−2x3)+(x3y+x2y2−2x2y)−(x2+xy−2x)+3P=(x4+x3y−2x3)+(x3y+x2y2−2x2y)−(x2+xy−2x)+3P=(x3x+x3y−2x3)+(x2y.x+x2yy−2x2y)−(xx+xy−2x)+3P=(x3x+x3y−2x3)+(x2y.x+x2yy−2x2y)−(xx+xy−2x)+3
P=x3(x+y−2)+x2y(x+y−2)−x(x+y−2)+3P=x3(x+y−2)+x2y(x+y−2)−x(x+y−2)+3
P=x3.0+x2y.0−x.0+3P=x3.0+x2y.0−x.0+3
P=3
![](https://rs.olm.vn/images/avt/0.png?1311)
M=( x^2y^3 + x^3y^2 - x^2 + y^2 + 5) - (x^2y^3 + x^3y^2 + 2xy^2 -1)
M= x^2y^3 + x^3y^2 - x^2 + y^2 + 5 - x^2y^3 - x^3y^2 - 2xy^2 +1
M= y^2 - x^2- 2xy^2 +6
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(2x^3+3x^2y-2xy-3y^2+2016\)
\(=x^2\left(2x+3y\right)-y\left(2x+3y\right)+2016\)
\(=x^2\cdot0-y\cdot0+2016\)
=2016
`2x^3+3x^2y-2xy-3y^2+2016`
`=x^2(2x+3y)-y(2x+3y)+2016`
Mà `2x+3y=0`
`=>2x^3+3x^2y-2xy-3y^2+2016=0+0+2016=2016`
\(2x^2-2xy+2y^2-3y+\dfrac{3}{2}=0\)
\(\Leftrightarrow4x^2-4xy+4y^2-6y+3=0\)
\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(3y^2-6y+3\right)=0\)
\(\Leftrightarrow\left(2x-y\right)^2+3\left(y-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=\dfrac{1}{2}\end{matrix}\right.\)