Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.(2x-9)chia het cho (x-5)
suy ra 2x-9 chia het cho (x-5)
ta co (x-5) chia het cho (x-5)
suy ra 2.(x-5) chia het cho (x-5)
suy ra 2x-10 chia het cho (x-5)
suy ra (2x-10)-(2x-9) chia het cho (x-5)
suy ra 2x-10-2x+9 chia het cho (x-5)
suy ra -1 chia het cho (x-5)
suy ra x-5 thuoc Ư(-1)
Ư(-1)=...
neu x-5=1 suy ra x=6
neu x-5=-1 ...
vay x=...
a) Vì x+3 chia hết cho x-2 suy ra (x-2)+5 chia hết cho x-2.
Từ đây, ta có 5 cũng chia hết cho x-2, suy ra: x-2 thuộc Ư(5)
Ư(5)={-5; -1; 1; 5}
x-2 | -5 | -1 | 1 | 5 |
x | -3 | 1 | 3 | 7 |
b)
a) Ta có: \(2x-2\)\(⋮\)\(x-2\)
\(\Leftrightarrow\)\(2\left(x-2\right)+2\)\(⋮\)\(x-2\)
Ta thấy \(2\left(x-2\right)\)\(⋮\)\(x-2\)
nên \(2\)\(⋮\)\(x-2\)
hay \(x-2\)\(\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta lập bảng sau:
\(x-2\) \(-2\) \(-1\) \(1\) \(2\)
\(x\) \(0\) \(1\) \(3\) \(4\)
Vậy \(x=\left\{0;1;3;4\right\}\)
a,
Vì -4 chia hết cho x-5
=> x-5 thuộc Ư(-4)
Ta có: Ư(-4) = {+_1 ; +_2 ; +_4}
=> x-5 thuộc {+_1 ; +_2 ; +_4}
=> x thuộc {6;4;7;3;9;1}
Vậy ....
b,
x-3 chia hết cho x+1
=> x+1-4 chia hết cho x+1
Mà x+1 chia hết cho x+1
=> 4 chia hết cho x+1
=> x+1 thuộc Ư(4)
Ta có: Ư(4) = {+_1 ; +_2 ; +_4}
=> x+1 thuộc {+_1 ; +_2 ; +_4}
=> x thuộc {0;-2;1;-3;3;-5}
Vậy ....
c,
2x-6 chia hết cho 2x+2
=> 2x+2-8 chia hết cho 2x+2
Mà 2x+2 chia hết cho 2x+2
=> 8 chia hết cho 2x+2
=> 2x+2 thuộc Ư(8)
Ta có: Ư(8) = {+_1 ; +_2 ; +_4 ; +_8}
=> 2x+2 thuộc {+_1 ; +_2 ; +_4 ; +_8}
=> 2x thuộc {-1;-3;0;-4,2;-6;6;-10}
=> x thuộc {-0.5;-1.5;0;-2;1;-3;3;-5}
Vậy ...
P/S : \(x\inℤ\)hay \(x\inℕ\)?
+) Trường hợp \(x\inℕ\)
\(29⋮2x-1\Rightarrow2x-1\inƯ\left(29\right)=\left\{1;29\right\}\)
+) Trường hợp \(x\inℤ\)
\(29⋮2x-1\Rightarrow2x-1\inƯ\left(29\right)=\left\{1;-1;29;-29\right\}\)