Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có B=-(\(\left(x^6-16x^3\right)=-\left(x^6-16x^3+64\right)+64=64-\left(x^3-8\right)^2\le64\)
dấu = xảy ra ,=> x=2
Ta có:
\(\left(x^2+8x+12\right)\left(x^2-7x+12\right)=16x^2\)
\(\Leftrightarrow\left(x^2-7x+12+15x\right)\left(x^2-7x+12\right)=16x^2\)
Đặt \(x^2-7x+12=a\)
Khi đó phương trình trở thành:
\(\left(a+15x\right)a=16x^2\)
\(\Leftrightarrow a^2+15ax=16x^2\)
\(\Leftrightarrow a^2+15ax-16x^2=0\)
\(\Leftrightarrow a^2-ax+16ax-16x^2=0\)
\(\Leftrightarrow a\left(a-x\right)+16x\left(a-x\right)=0\)
\(\Leftrightarrow\left(a-x\right)\left(a+16x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-x=0\\a+16x=0\end{cases}}\)
+) Với \(a-x=0\Leftrightarrow x^2-7x+12-x=0\Leftrightarrow x^2-8x+12=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=6\end{cases}}\)
+) Với \(a+16x=0\Leftrightarrow x^2-7x+12+16x=0\Leftrightarrow x^2+9x+12=0\)(vô nghiệm)
Vậy tập hợp nghiệm của phương trình là \(S=\left\{2;6\right\}\)
a) 3x4 - 13x3 + 16x2 - 13x + 3 = 0
(x - 3)(3x - 1)(x2 - x + 1) = 0
nhưng vì x2 - x + 1 # 0 nên:
x - 3 = 0 hoặc 3x - 1 = 0
x = 0 + 3 3x = 0 + 1
x = 3 3x = 1
x = 1/3
b) 6x4 + 5x3 - 38x2 + 5x + 6 = 0
(x - 2)(x + 3)(3x + 1)(2x - 1) = 0
x - 2 = 0 hoặc x + 3 = 0 hoặc 3x + 1 = 0 hoặc 2x - 1 = 0
x = 0 + 2 x = 0 - 3 3x = 0 - 1 2x = 0 + 1
x = 2 x = -3 3x = -1 2x = 1
x = -1/3 x = 1/2
\(=-\left(16x^2-16x-2\right)\)
\(=-\left(16x^2-2\cdot4x\cdot2+4-6\right)\)
\(=-\left(4x-2\right)^2+6\le6\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)