Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+2\right)\left(x^2-4x+4\right)-\left(x^3+2x^2\right)=5\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-4x+4\right)-x^2\left(x+2\right)=5\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-4x+4-x^2\right)=5\)
\(\Leftrightarrow\left(x+2\right)\left(4-4x\right)=5\)
\(\Leftrightarrow4x-4x^2+8-8x=5\)
\(\Leftrightarrow-4x^2-4x+3=0\)
\(\Leftrightarrow4x^2+4x-3=0\)
\(\Leftrightarrow4x^2-2x+6x-3=0\)
\(\Leftrightarrow2x\left(2x-1\right)+3\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)
Vậy \(x=\left\{\frac{1}{2};-\frac{3}{2}\right\}\)
b) \(6x^2-6x\left(-2+x\right)=36\)
\(\Leftrightarrow6x^2+12x-6x^2=36\)
\(\Leftrightarrow12x=36\)
\(\Leftrightarrow x=3\)
Vậy x = 3
c) \(\left(x+2\right)^2+\left(x-3\right)^2-2\left(x-1\right)\left(x+1\right)=9\)
\(\Leftrightarrow x^2+4x+4+x^2-6x+9-2\left(x^2-1\right)=9\)
\(\Leftrightarrow2x^2-2x+13-2x^2+2=9\)
\(\Leftrightarrow15-2x=9\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
Vậy x = 3
d) \(\left(x+5\right)^2-9=0\)
\(\Leftrightarrow\left(x+5\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+5\right)^2=3^2\\\left(x+5\right)^2=\left(-3\right)^2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x+5=3\\x+5=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-8\end{matrix}\right.\)
Vậy x ={-2; -8}
e) \(\left(x-2\right)^3=x^3+6x^2=7\) (Câu này sai đề thì phải! Mình sửa lại đề, có gì không giống với đề của bạn thì ib mình sửa nha!)
\(\left(x-2\right)^3-x^3+6x^2=7\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+6x^2=7\)
\(\Leftrightarrow12x-8=7\)
\(\Leftrightarrow12x=15\)
\(\Leftrightarrow x=\frac{5}{4}\)
Vậy \(x=\frac{5}{4}\)
#Chúc bạn học tốt!
Cm: Ta có:
a) A = x2 - 8x + 20 = (x2 - 8x + 16) + 4 = (x - 4)2 + 4 > 0 \(\forall\) x(vì (x - 4)2 \(\ge\)0 \(\forall\)x ; 4 > 0)
=> A luôn dương với mọi x
b) B = 4x2 - 12x + 11 = [(2x)2 - 12x + 9] + 2 = (2x - 3)2 + 2 > 0 \(\forall\)x (vì (2x - 3)2 \(\ge\)0 \(\forall\)x; 2 > 0)
=> B luôn dương với mọi x
c) C = x2 - x + 1 = (x2 - x + 1/4) + 3/4 = (x - 1/2)2 + 3/4 > 0 \(\forall\)x (vì (x - 1/2)2 \(\ge\)0 \(\forall\)x; 3/4 > 0)
=> C luôn dương với mọi x
* Tìm x
3(x + 2)2 + (2x - 1)2 - 7(x + 3)(x - 3) = 36
=> 3(x2 + 4x + 4) + 4x2 - 4x + 1 - 7(x2 - 9) = 36
=> 3x2 + 12x + 12 + 4x2 - 4x + 1 - 7x2 + 63 = 36
=> 8x + 76 = 36
=> 8x = 36 - 76
=> 8x = -40
=> x = -40 : 8 = -5
a) \(\left(3x-1\right)^2-3x\left(x-5\right)=21\)
\(\Leftrightarrow9x^2-6x+1-3x^2+15x=21\)
\(\Leftrightarrow6x^2+9x-20=0\)
\(\Leftrightarrow x\in\left\{-\sqrt{\frac{\sqrt{561}+9}{12}};\sqrt{\frac{\sqrt{561}-9}{12}}\right\}\)
b) \(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right)\left(x-2\right)=36\)
\(\Leftrightarrow3x^2+12x+12+4x^2-4x+1-7x^2+63=36\)
\(\Leftrightarrow8x+76=36\)
\(\Leftrightarrow8x=-40\)
\(\Leftrightarrow x=-5\)
\(a,\left(2x+y+3\right)^2=4x^2+y^2+9+4xy+12x+6y\)
\(b,\left(x-2y+1\right)^2=x^2+4y^2+1-4xy+2x-4y\)
\(c,\left(x^2-2xy^2-3\right)^2=x^4+2x^2y^4+9-4x^3y^2-6x^2+12xy^2\)
1) (x - 2)2 - (x - 3)(x + 3) = 17
=> x2 - 4x + 4 - x2 + 9 = 17
=> -4x = 17 - 13
=> -4x = 4
=> x = -1
2) TTT
3) x2 + 6x - 147 = 0
=> x2 + 19x - 13x - 147 = 0
=> x(x + 19) - 13(x + 19) = 0
=> (x - 13)(x + 19) = 0
=> \(\orbr{\begin{cases}x-13=0\\x+19=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=13\\x=-19\end{cases}}\)
4) (3x - 5)(2x + 3) - 6x2 = 7
=> 6x2 + 9x - 10x - 15 - 6x2 = 7
=> -x - 15 = 7
=> -x = 7 + 15
=> -x = 22
=> x = -22
5) TL
a) (x2 + 2xy + y2) : (x + y) = (x + y)2 : (x + y) = x + y.
b) (125x3 + 1) : (5x + 1) = [(5x)3 + 1] : (5x + 1)
= (5x)2 – 5x + 1 = 25x2 – 5x + 1.
c) (x2 – 2xy + y2) : (y – x) = (x – y)2 : [-(x – y)] = - (x – y) = y – x
Hoặc (x2 – 2xy + y2) : (y – x) = (y2 – 2xy + x2) : (y – x)
= (y – x)2 : (y – x) = y - x.
Bài giải:
a) (x2 + 2xy + y2) : (x + y) = (x + y)2 : (x + y) = x + y.
b) (125x3 + 1) : (5x + 1) = [(5x)3 + 1] : (5x + 1)
= (5x)2 – 5x + 1 = 25x2 – 5x + 1.
c) (x2 – 2xy + y2) : (y – x) = (x – y)2 : [-(x – y)] = - (x – y) = y – x
Hoặc (x2 – 2xy + y2) : (y – x) = (y2 – 2xy + x2) : (y – x)
= (y – x)2 : (y – x) = y - x.
4x(x-2005)-(x+2005)=0
4x(x-2005)+(x-2005)=0
(x-2005)(4x+1)=0
<=>x-2005=>x=2005
4x+1=0=>x=-1/4
b, (x+1)2-x-1=0
(x+1)2-(x+1)=0
(x+1)(x+1-1)=0
(x+1)x=0
<=>x+1=0=>x=-1
x =0
a) \(x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
\(=\left(x+1\right)\cdot\left[x\cdot\left(x-1\right)-\left(x^2-x+1\right)\right]\)
\(=\left(x+1\right)\left(x^2-x-x^2+x-1\right)\)
\(=\left(x+1\right)\cdot\left(-1\right)\)
\(=-1\left(x+1\right)\)
b) \(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3\left(x+4\right)\left(x-4\right)\)
\(=x^3-3x^2+3x-1-\left(x^3+8\right)+\left(3x+12\right)\left(x-1\right)\)
\(=x^3-3x^2+3x-1-\left(x^3+8\right)+3x^2-3x+12x-12\)
\(=x^3-1-x^3-8+12x-12\)
\(=-21+12x\)
c) \(3x^2\left(x+1\right)\left(x-1\right)+\left(x^2-1\right)^3-\left(x^2-1\right)\left(x^4+x^2+1\right)\)
\(=3x^2\left(x^2-1\right)+x^6-3x^4+3x^2-1-\left(x^6-1\right)\)
\(=3x^4-3x^2+x^6-3x^4+3x^2-1-x^6+1\)
\(=0\)
Chỗ dấu bằng thứ hai sai nên bạn làm cũng chưa đúng
x^6 -y^6 = (x^2-y^2)(x^4 +x^2 .y^2 + y^4)
Bạn hiểu ra chỗ sai của mình chưa.Chúc bạn học tốt.
3(x + 2)^2 + (2x - 1)^2 - 7(x + 3)(x - 3) = 36
=> 3(x^2 + 4x + 4) + 4x^2 - 4x + 1 - 7(x^2 - 9) = 36
=> 3x^2 + 12x + 12 + 4x^2 - 4x + 1 - 7x^2 + 63 = 36
=> 8x + 76 = 36
=> 8x = -40
=> x = -5