K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2021

\(x^4-9x^3-x^2+9x=0\)

\(\Leftrightarrow\left(x^4-x^2\right)+\left(-9x^3+9x\right)=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-9x\left(x^2-1\right)=0\)

\(\Leftrightarrow x\left(x-9\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\)\(x=0\) hoặc \(x-9=0\) hoặc \(x-1=0\) hoặc \(x+1=0\).

1.\(x=0\).

2. \(x-9=0\Leftrightarrow x=-9\).

3. \(x-1=0\Leftrightarrow x=1\).

4. \(x+1=0\Leftrightarrow x=-1\).

Vậy \(x\in\left\{-9;-1;0;1\right\}\).

9 tháng 8 2021

1, \(x^3+4x^2+4x=0\Leftrightarrow x\left(x^2+4x+4\right)=0\)

\(\Leftrightarrow x\left(x+2\right)^2=0\Leftrightarrow x=-2;x=0\)

2, \(\left(x+3\right)^2-4=0\Leftrightarrow\left(x+3-2\right)\left(x+3+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=1\)

3, \(x^4-9x^2=0\Leftrightarrow x^2\left(x^2-9\right)=0\)

\(\Leftrightarrow x^2\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=0;\pm3\)

4, \(x^2-6x+9=81\Leftrightarrow\left(x-3\right)^2=9^2\)

\(\Leftrightarrow\left(x-3-9\right)\left(x-3+9\right)=0\Leftrightarrow\left(x-12\right)\left(x+6\right)=0\Leftrightarrow x=-6;x=12\)

5, em xem lại đề nhé

9 tháng 8 2021

à lag tý @@

5, \(x^3+6x^2+9x-4x=0\Leftrightarrow x^3+6x^2+5x=0\)

\(\Leftrightarrow x\left(x^2+6x+5\right)=0\Leftrightarrow x\left(x^2+x+5x+5\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=-1;x=0\)

7 tháng 7 2018

\(x^3-9x+7x^2-63=0\)

\(\Rightarrow\left(x^3+7x^2\right)-9x-63=0\)

\(\Rightarrow x^2\left(x+7\right)-9\left(x+7\right)=0\)

\(\Rightarrow\left(x^2-9\right)\left(x+7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-9=0\\x+7=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=9\\x=-7\end{cases}\Rightarrow}\orbr{\begin{cases}x=\pm3\\x=-7\end{cases}}}\)

Vậy ...

14 tháng 7 2021

x3−9x+7x2−63=0x3−9x+7x2−63=0

⇒(x3+7x2)−9x−63=0⇒(x3+7x2)−9x−63=0

⇒x2(x+7)−9(x+7)=0⇒x2(x+7)−9(x+7)=0

⇒(x2−9)(x+7)=0⇒(x2−9)(x+7)=0

⇒{x2−9=0x+7=0⇒{x2=9x=−7⇒{x=±3x=−7⇒{x2−9=0x+7=0⇒{x2=9x=−7⇒{x=±3x=−7

Vậy ...

23 tháng 6 2020

a) 5x + 6 = 0

<=> 5x = -6

<=> x = \(-\frac{6}{5}\)

Vậy phương trình có tập nghiệm là: S = {\(-\frac{6}{5}\)}
b) 9x - 3 = 6x + 21

<=> 3x = 24

<=> x = 8

Vậy phương trình có tập nghiệm là: S = {8}
c) x3 - 9x = 0

<=> x(x2 - 9) = 0

<=> x(x - 3)(x + 3) = 0

<=> \(\left[{}\begin{matrix}x=0\\x-3=0\\x+3=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: S = {0; 3; -3}
d) ĐKXĐ: \(x\ne2;x\ne-2\)

\(\frac{1}{x-2}-\frac{x^2-4}{4-x^2}=0\)

\(\Leftrightarrow\frac{1}{x-2}+\frac{x^2-4}{x^2-4}=0\)

\(\Rightarrow x+2+x^2-4=0\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow x^2+2x-x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(TM\right)\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: S ={1}

a) Ta có: 5x+6=0

⇔5x=-6

hay \(x=-\frac{6}{5}\)

Vậy: \(S=\left\{-\frac{6}{5}\right\}\)

b) Ta có: 9x-3=6x+21

⇔9x-6x=21+3

⇔3x=24

hay x=8

Vậy: S={8}

c) Ta có: \(x^3-9x=0\)

\(\Leftrightarrow x\left(x^2-9\right)=0\)

\(\Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

Vậy: S={-3;0;3}

d) ĐKXĐ: x∉{2;-2}

Ta có: \(\frac{1}{x-2}-\frac{x^2-4}{4-x^2}=0\)

\(\Leftrightarrow\frac{1}{x-2}+\frac{4-x^2}{4-x^2}=0\)

\(\Leftrightarrow\frac{1}{x-2}+1=0\)

\(\Leftrightarrow\frac{1}{x-2}+\frac{x-2}{x-2}=0\)

Suy ra: \(1+x-2=0\)

\(\Leftrightarrow x-1=0\)

hay x=1(tm)

Vậy: S={1}

14 tháng 7 2018

\(a,9x^2-6x-3=0\)

\(\Leftrightarrow9x^2-6x+1-4=0\)

\(\Leftrightarrow\left(3x-1\right)^2=4\)

\(\Rightarrow3x-1=\pm2\)

\(\hept{\begin{cases}3x-1=2\Rightarrow x=1\\3x-1=-2\Rightarrow x=\frac{-1}{3}\end{cases}}\)

Vậy \(x=1\) hoặc \(x=\frac{-1}{3}\)

\(b,x^3+9x^2+27x+19=0\)

\(\Leftrightarrow x^3+9x^2+27x+27-8=0\)

\(\Leftrightarrow\left(x+3\right)^3=8\)

\(\Rightarrow x+3=2\)

\(\Rightarrow x=-1\)

Vậy \(x=-1\)

\(c,x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)

\(\Leftrightarrow x\left(x^2-25\right)-\left(x^3+8\right)=3\)

\(\Leftrightarrow x^3-25x-x^3-8=3\)

\(\Leftrightarrow-25x=11\)

\(\Leftrightarrow x=\frac{-11}{25}\)

Vậy \(x=\frac{-11}{25}\)

14 tháng 7 2018

\(9x^2-6x-3=0\)

<=> \(\left(3x\right)^2-2.3x.1+1-4=0\)

<=> \(\left(3x-1\right)^2-2^2=0\)

<=> \(\left(3x-3\right)\left(3x+1\right)=0\)

<=> \(\hept{\begin{cases}3x-3=0\\3x+1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=1\\x=\frac{-1}{3}\end{cases}}\)

\(x^3+9x^2+27x+19\) \(=0\)

<=>\(x^3+x^2+8x^2+8x+19x+19=0\)

<=> \(x^2\left(x+1\right)+8x\left(x+1\right)+19\left(x+1\right)=0\)

<=> \(\left(x^2+8x+19\right)\left(x+1\right)=0\)

mà \(x^2+8x+19>0\)

=> \(x+1=0\)

<=> \(x=-1\)

\(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)

<=> \(x\left(x^2-25\right)-\left(x+2\right)\left(x-2\right)^2=3\)

<=> \(x^3-25x-\left(x^2-4\right)\left(x-2\right)=3\)

<=>  \(x^3-25x-\left(x^3-2x^2-4x+8\right)=3\)

<=> \(x^3-25x-x^3+2x^2+4x-8=3\)

<=> \(2x^2-21x-8=3\)

<=> \(2x^2-21x-11=0\)

<=> \(2x^2-22x+x-11=0\)

<=> \(2x\left(x-11\right)+\left(x-11\right)=0\)

<=> \(\left(2x+1\right)\left(x-11\right)=0\)

<=> \(\hept{\begin{cases}2x+1=0\\x-11=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{-1}{2}\\x=11\end{cases}}\)

6 tháng 7 2016

Bài 1:

a)-x^2+4x-5

=-(x2-4x+5)<0 với mọi x

=>-x^2+4x-5<0 với mọi x

b)x^4+3x^2+3

\(=\left(x^2+\frac{3}{2}\right)^2+\frac{3}{4}>0\)với mọi x

=>x^4+3x^2+3>0 với mọi x

c) bn xét từng th ra

Bài 2:

a)9x^2-6x-3=0

=>3(3x2-2x-1)=0

=>3x2-2x-1=0

=>3x2+x-3x-1=0

=>x(3x+1)-(3x+1)=0

=>(x-1)(3x+1)=0

b)x^3+9x^2+27x+19=0

=>(x+1)(x2+8x+19) (dùng pp nhẩm nghiệm rồi mò ra)

  • Với x+1=0 =>x=-1
  • Với x2+8x+19 =>vô nghiệm

c)x(x-5)(x+5)-(x+2)(x^2-2x+4)=3

=>x3-25x-x3-8=3

=>-25x-8=3

=>-25x=1

=>x=-11/25

6 tháng 7 2016

mk sửa 1 tí ở dấu => thứ 2 từ dưới lên là

=>-25x=11

19 tháng 7 2018

a) 5xy ( x - y ) - 2x + 2y

= 5xy ( x - y ) - 2 ( x - y )

= ( x - y ) ( 5xy - 2 )

b) 6x-2y-x(y-3x)

= 2 ( y - 3x ) - x ( y - 3x )

= ( y - 3x ( ( 2 - x )

c)  x+ 4x - xy-4y

= x ( x + 4 ) - y ( x + 4 )

( x + 4 ) ( x - y )

d) 3xy + 2z - 6y - xz 

= ( 3xy - 6y ) + ( 2z - xz )

= 3y ( x - 2 ) + z ( x - 2 )

= ( x - 2 ) ( 3y + z )

19 tháng 7 2018

a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)

b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)

c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)

d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)

11)

a,4-9x^2=0

(2-3x)(2+3x)=0

2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3

b,x^2 +x+1/4=0

(x+1/2)^2 =0

x+1/2=0

x=-1/2

c,2x(x-3)+(x-3)=0

(x-3)(2x+1)=0

x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2

d,3x(x-4)-x+4=0

3x(x-4)-(x-4)=0

(x-4)(3x-1)=0

x-4=0=>x=4 hoặc 3x-1=0=>x=1/3

e,x^3-1/9x=0

x(x^2-1/9)=0

x(x+1/3)(x-1/3)=0

x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3

f,(3x-y)^2-(x-y)^2 =0

(3x-y-x+y)(3x-y+x-y)=0

2x(4x-2y)=0

4x(2x-y)=0

x=0hoặc 2x-y=0=>x=y/2

25 tháng 6 2018

\(x^3+9x=0\)

<=> \(x\left(x^2+9\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\x^2+9=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=0\\x\in\varnothing\end{cases}}\)

<=> \(x=0\)

\(9x^2-4-2\left(3x-2\right)^2=0\)

<=> \(\left(9x^2-4\right)-2\left(3x-2\right)^2=0\)

<=> \(\left[\left(3x\right)^2-2^2\right]-2\left(3x-2\right)^2=0\)

<=> \(\left(3x-2\right)\left(3x+2\right)-2\left(3x-2\right)^2=0\)

<=> \(\left(3x-2\right)\left[\left(3x+2\right)-2\left(3x-2\right)\right]=0\)

<=> \(\left(3x-2\right)\left(3x+2-6x+4\right)=0\)

<=> \(\left(3x-2\right)\left(-3x+6\right)=0\)

<=> \(\left(3x-2\right)3\left(-x+2\right)=0\)

<=> \(3\left(3x-2\right)\left(2-x\right)=0\)

<=> \(\orbr{\begin{cases}3x-2=0\\2-x=0\end{cases}}\)

<=> \(\orbr{\begin{cases}3x=2\\x=2\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{2}{3}\\x=2\end{cases}}\)

\(\left(x^3-x^2\right)-4x+8x-4=0\)

<=> \(\left(x^3-x^2\right)+\left(4x-4\right)=0\)

<=> \(x^2\left(x-1\right)+4\left(x-1\right)=0\)

<=> \(\left(x-1\right)\left(x^2+4\right)=0\)

<=> \(\orbr{\begin{cases}x-1=0\\x^2+4=0\end{cases}}\)

<=> \(x=1\)

\(\left(25x^2-10x\right):\left(-5x\right)-3\left(x-2\right)=4\)

<=> \(5x\left(5x-2\right)\left(-\frac{1}{5x}\right)-3\left(x-2\right)=4\)

<=> \(-\left(5x-2\right)-3\left(x-2\right)=4\)

<=> \(\left(5x-2\right)+3\left(x-2\right)=-4\)

<=> \(5x-2+3x-6=-4\)

<=> \(8x-8=-4\)

<=> \(8\left(x-1\right)=-4\)

<=> \(x-1=-\frac{1}{2}\)

<=> \(x=-\frac{3}{2}\)