Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thieu de :v
\(x^3-7x-6=0\)
\(\Leftrightarrow x^3-4x-3x-6=0\)
\(\Leftrightarrow x\left(x^2-4\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-2x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-3x+x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x-3\right)+\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)Hoặc x + 2 = 0
Hoặc x - 3 = 0
Hoặc x + 1 = 0
\(\Leftrightarrow\)Hoặc x = -2 Hoặc x = 3 Hoặc x = -1
Vậy tập nghiệm của phương trình là ; \(S=\left\{-2;3;-1\right\}\)
I don't now
or no I don't
..................
sorry
a) \(x^4-x^3-7x^2+x+6=0\)
\(\Leftrightarrow\)\(x^4-x^3-7x^2+7x-6x+6=0\)
\(\Leftrightarrow\)\(x^3\left(x-1\right)-7x\left(x-1\right)-6\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x^3-7x-6\right)=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=0\)
đến đây lm tiếp
Ukm
It's very hard
l can't do it
Sorry!
a) \(x^4-x^3-7x^2+x+6=0\)
\(\Leftrightarrow x^4+2x^3-3x^3-6x^2-x^2-2x+3x+6=0\)
\(\Leftrightarrow x^3\left(x+2\right)-3x^2\left(x+2\right)-x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-3x^2-x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-3\right)-\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-3\right)=0\). Làm nốt
b) \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\)
\(\Leftrightarrow2x^2+2xy+y^2+9-6x+\left|y+3\right|=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+x^2-6x+9+\left|y+3\right|=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-3\right)^2+\left|y+3\right|=0\)
Do \(\left(x+y\right)^2\ge0;\left(x-3\right)^2\ge0;\left|y+3\right|\ge0\forall x;y\)
\(\Rightarrow\hept{\begin{cases}x+y=0\\x-3=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\)
c) \(\left(2x^2+x\right)^2-4\left(2x^2+x\right)+3=0\)
\(\Leftrightarrow\left(2x^2+x\right)^2-2.\left(2x^2+x\right).2+4-1=0\)
\(\Leftrightarrow\left(2x^2+x-2\right)^2=1\Leftrightarrow\orbr{\begin{cases}2x^2+x-2=1\\2x^2+x-2=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2+x-3=0\\2x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2+2.x.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}-\frac{3}{2}=0\\x^2+2.x.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}-\frac{1}{2}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{4}\right)^2-\frac{25}{16}=0\\\left(x+\frac{1}{4}\right)^2-\frac{9}{16}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x+\frac{1}{4}\right)^2=\frac{25}{16}\\\left(x+\frac{1}{4}\right)^2=\frac{9}{16}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{4}=\pm\frac{5}{4}\\x+\frac{1}{4}=\pm\frac{3}{4}\end{cases}}\)
Từ đó tính đc x
d) \(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)
\(\Leftrightarrow\left(x^2+x+2x+2\right)\left(x^2+3x+4x+12\right)=24\)
\(\Leftrightarrow\left[x\left(x+1\right)+2\left(x+1\right)\right]\left[x\left(x+3\right)+4\left(x+3\right)\right]=24\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
Đặt \(x^2+5x+5=a\), khi đó pt có dạng:
\(\left(a-1\right)\left(a+1\right)-24=0\Leftrightarrow a^2-1-24=0\)
\(\Leftrightarrow a^2-25=0\Leftrightarrow\left(a-5\right)\left(a+5\right)=0\Leftrightarrow\orbr{\begin{cases}a=5\\a=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2+5x+5=5\\x^2+5x+5=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\x^2+5x+10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\x^2+2.x.\frac{5}{2}+\frac{25}{4}+\frac{15}{4}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\\left(x+\frac{5}{4}\right)^2=-\frac{15}{4}\left(vn\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
\(x^3-7x-6=0\)
\(\Leftrightarrow x^3+x^2-x^2-6x-x-6=0\)
\(\Leftrightarrow\left(x^3+x^2\right)-\left(x^2+x\right)-\left(6x+6\right)=0\)
\(\Leftrightarrow x^2\left(x+1\right)-x\left(x+1\right)-6\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^2-x-6\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[x\left(x-3\right)+2\left(x-3\right)\right]\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)\left(x+1\right)=0\)
\(\left[\begin{array}{nghiempt}x+2=0\\x-3=0\\x+1=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=3\\x=-1\end{array}\right.\)
Vây ...................
x^3 - 4x - 3x - 6 =0
\(\Leftrightarrow\)x(x^2-4) - 3(x+2) =0
\(\Leftrightarrow\)x(x-2)(x+2) - 3(x+2)=0
\(\Leftrightarrow\)(x+2)(x^2-2x-3)=0
\(\Leftrightarrow\)(x+2)(x^2-3x+x-3)=0
\(\Leftrightarrow\)(x+2)(x+1)(x-3)=0
\(\Leftrightarrow\)x=3 hoặc x=-1 hoặc x=-3
Gọi \(A\) = \(x^3-7x-6\)
\(A=x^3-x^2+x^2-x-6x+6\)
\(A=x^2\left(x-1\right)+x\left(x-1\right)-6\left(x-1\right)\)
\(A=\left(x-1\right)\left(x^2+x-6\right)\)
\(A=\left(x-1\right)\left(x^2+3x-2x-6\right)\)
\(A=\left(x-1\right)\left[x\left(x+3\right)-2\left(x+3\right)\right]\)
\(A=\left(x-1\right)\left(x+3\right)\left(x-2\right)\)
a, \(x^3-7x=0\Leftrightarrow x^2\left(x-7\right)=0\)
\(\left(+\right)x^2=0\Leftrightarrow x=0\)
\(\left(+\right)x-7=0\Leftrightarrow x=7\)
Vậy \(x=0;x=7\)
\(b,\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=0\)
\(\Leftrightarrow x^3+8-x^3-2x=0\)
\(\Leftrightarrow8-2x=0\)
\(\Leftrightarrow x=4\)
Vậy x=4
\(x^3-7x+6=0\)
\(\left(x^2+x-6\right)\left(x-1\right)=0\)
\(x=1\)
\(x^2+x-6=0\)
\(\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
a)4x2+8x+3=0
<=>(4x2+2x)+(6x+3)=0
<=>2x(2x+1)+3(2x+1)=0
<=>(2x+1)(2x+3)=0
<=>2x+1=0 hoặc 2x+3=0
<=>x=-1/2 hoặc x=-3/2
b)(2x+3)2=(x-6)2
<=>(2x+3)2-(x-6)2=0
<=>(2x-3-x+6)(2x+3+x-6)=0
<=>(x+3)(3x-3)=0
<=>x+3=0 hoặc 3x-3=0
<=>x=-3 hoặc x=1
c)x3-7x2+15x-9=0
<=>(x3-6x2+9x)-(x2-6x+9)=0
<=>x(x-3)2-(x-3)2=0
<=>(x-3)2(x-1)=0
<=>(x-3)2=0 hoặc x-1=0
<=>x=3 hoặc x=1
a) \(7x-10=5x-6\)
\(7x-5x=-6+10\)
\(2x=4\)
\(x=2\)
b) \(3x\left(x-2\right)+x-2=0\)
\(\left(x-2\right)\left(3x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\3x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-\frac{1}{3}\end{cases}}\)
c) \(2x^2+7x-4=0\)
\(2x^2-x+8x-4=0\)
\(x\left(2x-1\right)+2\left(2x-1\right)=0\)
\(\left(2x-1\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-1=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-2\end{cases}}\)
7x-10=5x-6<=>7x-5x=-6+10<=>2x=4=>x=2
3x(x-2)+x-2=0<=>(x-2)(3x+1)=0<=>x-2=0=>x=2 HAY 3x+1=0=>x=-1/3
2x2+7x-4=0.
Câu cuối xem có lộn đề không nha bạn ơi!!!
Ta có: \(x^3-7x-6=0\)
\(\Leftrightarrow x^3-x-6x-6=0\)
\(\Leftrightarrow x\left(x^2-1\right)-6\left(x+1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)-6\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x\left(x-1\right)-6\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-3x+2x-6\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x\left(x-3\right)+2\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=3\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;-2;3\right\}\)