Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+4x+3\)
\(=x^2+3x+x+3\)
\(=x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Leftrightarrow2x^2-10x-3x-2x^2=26\)
\(\Leftrightarrow-13x=26\Leftrightarrow x=-2\)
b) \(5x\left(x-1\right)=x-1\)
\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=\frac{1}{5}\end{array}\right.\)
c) \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-5\\x=2\end{array}\right.\)
d) \(\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\Leftrightarrow\left(x-8\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=8\\x=-\frac{2}{3}\end{array}\right.\)
e) \(3x^3-48x=0\)
\(\Leftrightarrow3x\left(x^2-16\right)=0\)
\(\Leftrightarrow3x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=4\\x=-4\end{array}\right.\)
f) \(x^3+x^2-4x=4\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=2\\x=-2\end{array}\right.\)
\(\left(5\cdot\left(x^2-3x+1\right)+x\cdot\left(1-5x\right)\right)-\left(x-2\right)=0\)
\(7-15x=0\)
\(-15x=-7\)
\(x=\frac{7}{15}=0.467\)
\(b,\)câu b dài quá nên mik lười, vậy mik ghi kết quả thôi nhé
\(x=\frac{2}{19}=0.105\)
\(c,\)câu c cũng vậy mik ghi kết quả thôi nhé bn
\(x=-\frac{6}{11}=-0.545\)
1. <=> \(\left(3x+2\right)^3-\left(\left(3x\right)^3+2^3\right)=0\)
<=> \(\left(\left(3x\right)^3+2^3+3\left(3x+2\right).3x.2\right)-\left(\left(3x\right)^3+2^3\right)=0\)
<=>3 (3x + 2) . 3x.2 = 0
<=> (3x + 2 ) . x = 0
<=> x = -2/3 hoặc x = 0
2. Tương tự
1
\(\left(3x+2\right)^3-\left[\left(3x\right)^3+2^3\right]=0\)
\(\left(3x\right)^3+3\cdot\left(3x\right)^2\cdot2+3\cdot3x\cdot2^2+2^3-\left(3x\right)^3-2^3=0\)
\(54x^2+36x=0\)
\(18x\left(3x+2\right)=0\)
\(\orbr{\begin{cases}x=0\\3x+2=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\frac{-2}{3}\end{cases}}\)
2
\(\left(2x+1\right)^3-\left[\left(2x\right)^3-1^3\right]=0\)
\(\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2+1^3-\left(2x\right)^3-1^3=0\)
\(12x^2+6x=0\)
\(6x\left(2x+1\right)=0\)
\(\orbr{\begin{cases}x=0\\2x+1=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\frac{-1}{2}\end{cases}}\)
\(4x^2-4x=8\)
\(\Leftrightarrow4x^2-4x-8=8-8\)
\(\Leftrightarrow4x^2-4x-8=0\)
\(\Leftrightarrow4\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
Vậy: x = -1 hoặc x = 2
4x2 - 4x = 8
=> 4x2 - 4x -8 = 0
=> 4( x2 - 2x -2 ) = 0
=> 4 ( x2 - x - x - 2 ) = 0
=> 4 ( x +1) ( x - 2 ) = 0
=> x + 1 = 0 hoặc x -2 = 0
x = -1 hoặc x = 2
1) 2x(x + 1) - x2(x + 2) + x3 - x + 4 = 0
<=> 2x.x + 2x.1 + (-x2).x + (-x2).2 + x3 - x + 4 = 0
<=> 2x2 + 2x - x3 - 2x2 + x3 - x = 0 - 4
<=> x = -4
=> x = -4
2) xem lại đề rồi chúng mình nói chuyện cậu nha :))
3) tương tự (mình hơi lười, thông cảm :v)
3, [(3x - 5)(7 - 5x)] - [(5x + 2)(2 - 3x)] = 4
<=> ( 21x -15x^2 -35 +25x) - (10x -15x^2 + 4-6x)=4
<=> 21x -15x^2 -35 +25x- 10x + 15x^2 - 4+6x =4
<=> 42x - 39 =4
<=> 42x = 43
<=< x =43/42
2, (3x - 2)(4x - 5 ) - (2x - 1)(6x + 2) = 0
12x2- 15x - 8x + 10 - 12x2 - 4x + 6x + 2 = 0
- 21x = -12
x = 4/7
1, đã có người giải
a, 5x - 7(3 - x) = 3
=> 5x - 21 + 7x = 3
=> 12x = 24
=> x = 2
b, 4x2 + 3x = 0
=> x(4x + 3) = 0
=> \(\orbr{\begin{cases}x=0\\4x+3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{-3}{4}\end{cases}}\)
c, (x + 1)2 - 4x2 =0
=> (x + 1)2 - (2x)2 = 0
=> (x + 1 - 2x)(x + 1 + 2x) = 0
=> (1 - x)(3x+ 1) = 0
=> \(\orbr{\begin{cases}1-x=0\\3x+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\x=\frac{-1}{3}\end{cases}}\)
d, x3 - 19x - 30 = 0
=> x3 - 5x2 + 5x2 - 25x + 6x - 30 = 0
=> x2(x - 5) + 5x(x - 5) + 6(x - 5) = 0
=> (x2 + 5x + 6)(x - 5) = 0
=> (x2 + 2x + 3x + 6)(x - 5) = 0
=> (x + 2)(x + 3)(x - 5) = 0
=> x + 2 = 0 hoặc x + 3 = 0 hoặc x - 5 = 0
=> x = -2 hoặc x = -3 hoặc x = 5
=> x thuộc {-2; -3; 5}
x2 + 4x + 3 = 0
<=> ( x + 1 )( x + 3 ) = 0
<=> x + 1 = 0 hoặc x + 3 = 0
<=> x = -1 hoặc x = -3
Vậy ...
x^2+4x+3=0
<=>x^2+x+3x+3=0
<=>x(x+1)+3(x+1)=0
<=>(x+1)(x+3)=0
<=>\(\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\)
vậy ............