K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2-x+\dfrac{1}{4}=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{1}{2}=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(x=\dfrac{1}{2}\)

Wish you study well !!

9 tháng 7 2018
https://i.imgur.com/VBISojR.jpg
4 tháng 10 2019

Ta có: \(x+2\sqrt{2}.x^2+2x^3=0\)

\(\Leftrightarrow x\left(1+2\sqrt{2}.x+2x^2\right)=0\)

\(\Leftrightarrow x\left[1^2+2.x\sqrt{2}.1+\left(x\sqrt{2}\right)^2\right]=0\)

\(\Leftrightarrow x\left(1+x\sqrt{2}\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\1+x\sqrt{2}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{\sqrt{2}}\end{cases}}\)

Vậy\(x\in\left\{0;\frac{-1}{\sqrt{2}}\right\}\)

4 tháng 10 2019

\(x+2\sqrt{2}x^2+2x^3=0\)

\(x\left(1+2\sqrt{2}x+2x^2\right)=0\)

\(x\left(2\sqrt{2}x+1\right)^2=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\2\sqrt{2}x+1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2x\sqrt{2}}\end{cases}}\)

20 tháng 12 2015

<=>\(\left(x^3-4x^2\right)+\left(x^2-4x\right)+\left(5x-20\right)=0\)

<=>\(x^2\left(x-4\right)+x\left(x-4\right)+5\left(x-4\right)=0\)

<=>\(\left(x^2+x+5\right)\left(x-4\right)=0\)

Vì \(x^2+x+5>0\)=>x-4=0

<=>x=4

1 tháng 12 2017

C1

 Câu trả lời hay nhất:  Bài này có nhiều cách giải khác nhau: 
C1: Nhận vào: 5x^2-16x+3=0, giải phương trình bậc 2 => x=3, x=1/5 
C2: Đặt nhân tử chung: 
5x(x-3)-(x-3)=0 <=> (x-3)(5x-1)=0 <=> x-3=0 hoặc 5x-1=0 
<=> x=3, x=1/5

C2

1 tháng 12 2017

Mình cần câu trả lời cụ thể hơn

30 tháng 10 2019

x.(x-5)+x-5=o

=> x.(x-5)+(x-5)=0

=>(x-5)(x+1)=0

=> x-5=0    =>x=5

     x+1=0        x=-1

30 tháng 10 2019

x ( x - 5 ) + x -  5 = 0

x ( x - 5 ) + ( x - 5 ) = 0

(x - 5 ) ( x + 1 ) = 0

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}}\)

Vậy...

5 tháng 1 2018

Violympic toán 8

25 tháng 9 2016

\(x^2\left(x+1\right)+\left(x+1\right)=y^3\)

\(\left(x+1\right)\left(x^2+1\right)=y^3\)

\(\left(x+1\right)\left(x^2+1\right)-y^3=0\)

\(\orbr{\begin{cases}x+1=0\\x^2+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x^2=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\kothoaman\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=-1\\y^3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=0\end{cases}}\)

Vậy x = -1, y =0

14 tháng 9 2017

\(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\)

\(\Leftrightarrow x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}-4=0\)

\(\Leftrightarrow\left(x^2-2.x.\frac{1}{x}+\frac{1}{x^2}\right)+\left(y^2-2.y.\frac{1}{y}+\frac{1}{y^2}\right)=0\)

\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)(1)

Ta thấy \(\left(x-\frac{1}{x}\right)^2\ge0;\left(y-\frac{1}{y}\right)^2\ge0\forall x;y\) nên \(\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2\ge0\forall x;y\)

Để (1) xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{x}\right)^2=0\\\left(y-\frac{1}{y}\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{x}\\y=\frac{1}{y}\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)

Vậy \(x=y=1\)