Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2x-10=0\)
\(\Leftrightarrow x^2+2x+1-9=0\)
\(\Leftrightarrow\left(x+1\right)^2-9=0\\\)
\(\Leftrightarrow\left(x+1\right)^2=9\)
\(\Leftrightarrow\left(x+1\right)^2=\pm\sqrt{9}\)
\(\Leftrightarrow\left(x+1\right)^2=\left(\pm3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3-1\\x=-3-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
Vậy S={2;-4}
\(a,\Rightarrow x\left(x+3\right)-\left(x-3\right)\left(x+3\right)=0\\ \Rightarrow\left(x+3\right)\left(x-x+3\right)=0\\ \Rightarrow3\left(x+3\right)=0\Rightarrow x=-3\\ b,A:B=\left(2x^2-x+4x-2\right):\left(2x-1\right)\\ =\left[x\left(2x-1\right)+2\left(2x-1\right)\right]:\left(2x-1\right)\\ =x+2\)
<=>\(\left(x^3-4x^2\right)+\left(x^2-4x\right)+\left(5x-20\right)=0\)
<=>\(x^2\left(x-4\right)+x\left(x-4\right)+5\left(x-4\right)=0\)
<=>\(\left(x^2+x+5\right)\left(x-4\right)=0\)
Vì \(x^2+x+5>0\)=>x-4=0
<=>x=4
\(x\left(x+5\right)\left(x-5\right)-\left(x+2\right)\left(x^2-2x+4\right)=42\)
\(\Leftrightarrow x\left(x^2-25\right)-\left(x^3+8\right)=42\)
\(\Leftrightarrow x^3-25x-x^3-8=42\)
\(\Leftrightarrow-25x-8=42\)
\(\Leftrightarrow-25x=42+8\)
\(\Leftrightarrow-25x=50\)
\(\Leftrightarrow x=-\dfrac{50}{25}=-2\)
Ta có: \(x+2\sqrt{2}.x^2+2x^3=0\)
\(\Leftrightarrow x\left(1+2\sqrt{2}.x+2x^2\right)=0\)
\(\Leftrightarrow x\left[1^2+2.x\sqrt{2}.1+\left(x\sqrt{2}\right)^2\right]=0\)
\(\Leftrightarrow x\left(1+x\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\1+x\sqrt{2}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{\sqrt{2}}\end{cases}}\)
Vậy\(x\in\left\{0;\frac{-1}{\sqrt{2}}\right\}\)
\(x+2\sqrt{2}x^2+2x^3=0\)
\(x\left(1+2\sqrt{2}x+2x^2\right)=0\)
\(x\left(2\sqrt{2}x+1\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2\sqrt{2}x+1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2x\sqrt{2}}\end{cases}}\)