\(^2\)<_ 0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2020

a)Ta thấy x2+4>0 lđ với mọi x

(x-1)(x2+4)<0 <=> x-1<0 <=> x<1

24 tháng 4 2020

b) Ta có: \(|x-5|\ge0lđ\Leftrightarrow|x-5|+5\ge5\)

Mà \(|x-5|+5=x\)

=> x\(\ge5\)

24 tháng 1 2019

2, có 2 th

th1: x+5>0 và 3x-12>0

th2: x+5<0 và 3x-12<0

bn tự giải tiếp nha phần sau dễ

mk biết làm bài 2 rồi nhưng bài 3 mk chưa biết làm, bạn chỉ cầ làm kĩ bài 3 cho mk thôi

a: (x-3)(x+2)<0

=>x+2>0 và x-3<0

=>-2<x<3

b: (x+2)(x+3)>0

=>x+2>0 hoặc x+3<0

=>x>-2 hoặc x<-3

d: 2(x+1)2=-7+15

=>2(x+1)2=8

=>(x+1)2=4

=>x+1=2 hoặc x+1=-2

=>x=1 hoặc x=-3

8 tháng 1 2018

a) \(\left(x^2+5\right)\left(x^2-25\right)< 0\)

\(\Rightarrow x^2-25< 0\) ( vì số mũ chẵn luôn dương + số dương luôn \(>0\) )

\(\Rightarrow\left(x-5\right)\left(x+5\right)< 0\)

\(\Rightarrow\hept{\begin{cases}x-5< 0\\x+5>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-5>0\\x+5< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x< 5\\x>-5\end{cases}}\)hoặc \(\hept{\begin{cases}x>5\\x< -5\end{cases}}\)

hợp nghiệm lại ta được \(-5< x< 5\)

vậy \(-5< x< 5\)

b) \(\left(x^2-5\right)\left(x^2-25\right)< 0\)

\(\Rightarrow\hept{\begin{cases}x^2-5< 0\\x^2-25>0\end{cases}}\)  hoặc \(\hept{\begin{cases}x^2-5>0\\x^2-25< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)< 0\\\left(x-5\right)\left(x+5\right)>0\end{cases}}\) hoặc \(\hept{\begin{cases}\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)>0\\\left(x-5\right)\left(x+5\right)< 0\end{cases}}\)

\(\Rightarrow\)

8 tháng 1 2018

a, Vì x^2 + 5 > 0 => x^2 - 25 < 0

=> (x-5).(x+5) < 0

Mà x-5 < x+5 => x-5<0 ; x+5>0 => x<5 ; x>-5 => -5 < x < 5

b,Vì x^2-5 > x^2-25 

=> x^2-5 >0 ; x^2-25 < 0

=> x^2 > 5 ; -5 < x < 5

=> \(-\sqrt{5}< x< \)\(\sqrt{5}\) ; -5 < x < 5

=> \(-\sqrt{5}\)< x < \(\sqrt{5}\)

Tk mk nha

2 tháng 9 2020

a) \(\left|x\right|\le4\)

\(\Rightarrow\left|x\right|\in\left\{1;2;3;4\right\}\)

\(\Rightarrow x\in\left\{\pm1;\pm2;\pm3;\pm4\right\}\)

Vậy \(x\in\left\{\pm1;\pm2;\pm3;\pm4\right\}\).

b) \(x^2< 20\)

\(\Rightarrow x^2\in\left\{1;4;9;16\right\}\)

\(\Rightarrow x\in\left\{\pm1;\pm2;\pm3;\pm4\right\}\)

Vậy \(x\in\left\{\pm1;\pm2;\pm3;\pm4\right\}\).

c) (x - 2) (x + 3) < 0

=> x - 2 > 0 và x + 3 < 0 hoặc x - 2 < 0 và x + 3 > 0

=> x > 2 và x < -3 (loại) hoặc x < 2 và x > -3

=> -3 < x < 2

=> x thuộc {-2 ; -1 ; 0 ; 1}

Vậy x thuộc {-2 ; -1 ; 0 ; 1}.

d) (x + 4) (x - 2) = 0

=> x + 4 = 0 hoặc x - 2 = 0

=> x = -4 hoặc x = 2

Vậy x thuộc {-4 ; 2}.

2 tháng 9 2020

Bg

a) Ta có: |x| < 4  (tất cả đều x \(\inℤ\)nhé)

Mà |x| > 0

=> x = {0; +1; +2; +3; +4}

Vậy...

b) x2 < 20   (x \(\inℤ\))

=> x2 < 42 + 4

=> x2 < 42 

Vì x2 > 0

=> -4 < x < 4

=> x = {0; +1; +2; +3; +4}

Vậy...

c) (x - 2)(x + 3) < 0   (x \(\inℤ\))

Vì x + 3 > x - 2

=> x - 2 < 0 và x + 3 > 0

Mà x + 3 - (x - 2) = x + 3 - x + 2 = (x - x) + 3 + 2 = 5

=> x - 2 < 0 và x - 2 + 5 > 0

=> -4 < x - 2 < 0

=> x - 2 = {-4; -3; -2; -1}

=> x = {-2; -1; 0; 1}

Vậy...

d) (x + 4)(x - 2) = 0

=> x + 4 = 0 hoặc x - 2 = 0

=> x = -4 hoặc x = 2

Vậy...

6 tháng 1 2017

a) \(x^2+1>0\)  thực tế lớn 1 không cần vì đang so sánh Với 0

=> để VT <0 cần (x-3)<0=> x<3 {âm nhân dương--> âm)

b) Lập bảng hợp lý nhất cho lớp 6

x-VC-7 4+VC
x+7-0+++
x-4---0+
(x+7)(x-4)+0-0+

b) vậy x<-7 hoạc x>4 thì VT>0

c) x^2+5> 0 mọi x

=> chỉ xét x^2-16 =(x-4)(x+4)

lập bảng như (b)=> x<-4 hoac x>4