Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- \(B=\left(\frac{21}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x-4\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{\left(x-3\right)\left(x-1\right)}{\left(x-3\right)\left(x+3\right)}\right):\frac{x+3-1}{x+3}\)\(=\frac{3x+6}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{x+2}=\frac{3\left(x+2\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+2\right)}=\frac{3}{x-3}\)
- Điều kiện \(x\ne3\) \(\Rightarrow\frac{-3}{5}=\frac{3}{x-3}\Leftrightarrow x-3=-5\Leftrightarrow x=-2\)
- \(B=\frac{3}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\)
a) B=(\(\frac{21}{x^2-9}\)-\(\frac{x-4}{3-x}\)-\(\frac{x-1}{3+x}\)) : (1-\(\frac{1}{x+3}\)) (ĐK: x khác +-3)
=(\(\frac{21}{\left(x-3\right).\left(x+3\right)}\)+\(\frac{x-4}{x-3}\)-\(\frac{x-1}{x+3}\)) : (1-\(\frac{1}{x+3}\))
=(\(\frac{21+\left(x+4\right).\left(x+3\right)-\left(x-1\right).\left(x-3\right)}{\left(x-3\right).\left(x+3\right)}\):(\(\frac{x+3-1}{x+3}\))
=(\(\frac{3x+6}{\left(x-3\right).\left(x+3\right)}\)) . (\(\frac{x+3}{x+2}\))
=(\(\frac{3.\left(x+2\right)}{\left(x-3\right).\left(x+3\right)}\). \(\frac{x+3}{x+2}\)
=\(\frac{3}{x-3}\)
b) B=\(\frac{3}{x-3}\)=\(\frac{-3}{5}\)
(=) \(\frac{3.5}{x-3}\)=-3
(=) -3.(x-3) = 15
(=) -3x=6
(=) x=-2
vậy x=2 thì B=\(\frac{-3}{5}\)
c) B=\(\frac{3}{x-3}\)<0
(=) 3 < x - 3
(=) -x < - 3 - 3
(=) x > 6
Vậy với x > 6 thì B < 0
\(B=\left(\frac{1-x^3}{1-x}-x\right):\frac{1-x^2}{1-x-x^2+x^3}\) \(ĐKXĐ:x\ne\pm1\)
\(B=\left[\frac{\left(1-x\right)\left(x^2+x+1\right)}{\left(1-x\right)}-x\right]:\frac{\left(x+1\right)\left(1-x\right)}{\left(1-x\right)-x^2\left(1-x\right)}\)
\(B=\left(x^2+x+1-x\right):\frac{\left(x+1\right)\left(1-x\right)}{\left(1-x\right)\left(1-x^2\right)}\)
\(B=\left(x^2+1\right):\frac{x+1}{\left(x+1\right)\left(1-x\right)}\)
\(B=\frac{x^2+1}{1-x}\)
vậy \(B=\frac{x^2+1}{1-x}\)
b) \(x=-1\frac{2}{3}\)
\(x=\frac{-5}{3}\)
khi đó \(B=\frac{\left(\frac{-5}{3}\right)^2+1}{1+\frac{5}{3}}\)
\(B=\frac{\frac{25}{9}+1}{\frac{8}{3}}\)
\(B=\frac{34}{9}:\frac{8}{3}\)
\(B=\frac{17}{12}\)
vậy \(B=\frac{17}{12}\) khi \(x=-1\frac{2}{3}\)
c) \(B< 0\Leftrightarrow\frac{x^2+1}{1-x}< 0\)
\(\Leftrightarrow\hept{\begin{cases}x^2+1>0\\1-x< 0\end{cases}}\)hoặc \(\hept{\begin{cases}x^2+1< 0\\1-x>0\end{cases}}\)
đến đây bạn giải tiếp
LÀm ý b thôi nha
\(\left(x+\frac{1}{2}\right)^2=\frac{4}{25}=\left(\frac{2}{5}\right)^2=\left(-\frac{2}{5}\right)^2\)
(+) x+ 1/2 = 2/5 ( hậu làm rùi)
(+) x + 1/2 = -2/5
=> x = -2/5 - 1/2
x = -9/10
Bài 2:
a: \(B=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x-2}\right):\left(\dfrac{x^2-4+16-x^2}{x+2}\right)\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x-2}\right):\dfrac{12}{x+2}\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x-2}\right):\dfrac{12}{x+2}\)
\(=\dfrac{x-x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{12}=\dfrac{-1}{6\left(x-2\right)}\)
b: Thay x=1/2 vào B, ta được:
\(B=\dfrac{-1}{6\cdot\left(\dfrac{1}{2}-2\right)}=\dfrac{-1}{6\cdot\dfrac{-3}{2}}=\dfrac{1}{9}\)
Thay x=-1/2 vào B, ta được:
\(B=\dfrac{-1}{6\cdot\left(-\dfrac{1}{2}-2\right)}=-\dfrac{1}{15}\)
c: Để B=2 thì \(\dfrac{-1}{6\left(x-2\right)}=2\)
=>6(x-2)=-1/2
=>x-2=-1/12
hay x=23/12
Ta có :
\(\left|x-\frac{2}{3}\right|< \frac{1}{3}\)
\(\Leftrightarrow\)\(\frac{-1}{3}< x-\frac{2}{3}< \frac{1}{3}\)
\(\Leftrightarrow\)\(\frac{-1}{3}+\frac{2}{3}< x-\frac{2}{3}+\frac{2}{3}< \frac{1}{3}+\frac{2}{3}\) ( cộng 3 vế cho \(\frac{2}{3}\) )
\(\Leftrightarrow\)\(\frac{1}{3}< x< 1\)
Vậy \(\frac{1}{3}< x< 1\)
Chúc bạn học tốt ~