Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
Bài 1:
- \(\dfrac{11}{2}x\) + 1 = \(\dfrac{1}{3}x-\dfrac{1}{4}\)
- \(\dfrac{11}{2}\)\(x\) - \(\dfrac{1}{3}\)\(x\) = - \(\dfrac{1}{4}\) - 1
-(\(\dfrac{33}{6}\) + \(\dfrac{2}{6}\))\(x\) = - \(\dfrac{5}{4}\)
- \(\dfrac{35}{6}\)\(x\) = - \(\dfrac{5}{4}\)
\(x=-\dfrac{5}{4}\) : (- \(\dfrac{35}{6}\))
\(x\) = \(\dfrac{3}{14}\)
Vậy \(x=\dfrac{3}{14}\)
Bài 2: 2\(x\) - \(\dfrac{2}{3}\) - 7\(x\) = \(\dfrac{3}{2}\) - 1
2\(x\) - 7\(x\) = \(\dfrac{3}{2}\) - 1 + \(\dfrac{2}{3}\)
- 5\(x\) = \(\dfrac{9}{6}\) - \(\dfrac{6}{6}\) + \(\dfrac{4}{6}\)
- 5\(x\) = \(\dfrac{7}{6}\)
\(x\) = \(\dfrac{7}{6}\) : (- 5)
\(x\) = - \(\dfrac{7}{30}\)
Vậy \(x=-\dfrac{7}{30}\)
Ta có: \(\hept{\begin{cases}\left|x+1\right|\ge0\\\left|x+3\right|\ge0\\\left|x+5\right|\ge0\end{cases}}\Rightarrow VT\ge0\)
\(\Leftrightarrow3x-4\ge\Leftrightarrow x\ge\frac{4}{3}\)
\(\Rightarrow pt\Leftrightarrow3x+9=3x-4\Leftrightarrow9=-4\)(vô lí)
Vậy pt vô nghiệm
\(\left||2x-3|-x+3\right|=4x-1\)(1)
*Nếu \(x\le3\)thì \(\left(1\right)\Leftrightarrow\left|2x-3\right|+3-x=4x-1\)
\(\Leftrightarrow\left|2x-3\right|=5x-4\)(2)
+) TH1: \(x\ge\frac{3}{2}\)thì \(\left(2\right)\Leftrightarrow2x-3=5x-4\)
\(\Leftrightarrow-3x=-1\Leftrightarrow x=\frac{1}{3}\left(L\right)\)
+) TH2: \(x< \frac{3}{2}\)thì \(\left(2\right)\Leftrightarrow3-2x=5x-4\)
\(\Leftrightarrow-7x=-7\Leftrightarrow x=1\left(TM\right)\)
*Nếu \(x>3\)thì \(\left(1\right)\Leftrightarrow\left|2x-3\right|-3+x=4x-1\)
\(\Leftrightarrow\left|2x-3\right|=3x+2\)(3)
+) TH1: \(x\ge\frac{3}{2}\)thì \(\left(3\right)\Leftrightarrow2x-3=3x+2\Leftrightarrow-x=5\Leftrightarrow x=-5\left(L\right)\)
+) TH2: \(x< \frac{3}{2}\)thì \(\left(3\right)\Leftrightarrow3-2x=3x+2\Leftrightarrow-5x=-1\Leftrightarrow x=\frac{1}{5}\left(L\right)\)
Vậy x = 1
1) 2x.(5x-3x)+2x.(3x-5)-3.(x-7)=3
10x-6x^2+6x^2-10x-3x+21=3
-3x =-18
suy ra x=6
2) 3x.(x+1) -2x.(x+2)=-1-x
3x^2 +3x-2x^2-4x =-1-x
x^2 =-1
suy ra không có giá trị nào của x thỏa mãn đề bài
3) 2x^2 +3.(x^2-1)=5x(x+1)
2x^2 +3x^2-3 =5x^2+5x
-5x =3
x=-3/5
giải rồi đấy
nhớ tích đúng nha :)
a: =>2x+5=4
=>2x=-1
hay x=-1/2
b: \(\Leftrightarrow\left(3x-4\right)^2\cdot\left[\left(3x-4\right)^2-1\right]=0\)
=>(3x-4)(3x-5)(3x-3)=0
hay \(x\in\left\{1;\dfrac{4}{3};\dfrac{5}{3}\right\}\)
c: \(\Leftrightarrow3^{x+1}=3^{2x}\)
=>2x=x+1
=>x=1
d: \(\Leftrightarrow2^{2x+3}=2^{2x-10}\)
=>2x+3=2x-10
=>0x=-13(vô lý)
1) |2x-1|=-19-x<=> \(\left[\begin{array}{nghiempt}2x-1=-19-x\\2x-1=19+x\end{array}\right.\)=> x=-6 hoặc x=20
2) |4-3x|=2x-10<=>\(\left[\begin{array}{nghiempt}4-3x=2x-10\\4-3x=10-2x\end{array}\right.\)=> x= 14/6 hoặc x=-6
3) |x|=3+2x<=> \(\left[\begin{array}{nghiempt}x=-3-2x\\x=3+2x\end{array}\right.\)=> x=-1 hoặc x=-3
1) - Nếu 2x - 1 < 0 thì -2x + 1 = -19 - x => -x = -20 => x = 20
- Nếu 2x - 1 > 0 thì 2x - 1 = -19 - x => 3x = -18 => x = -6
2) - Nếu 4 - 3x < 0 thì -4 + 3x = 2x - 10 => 6 = -x => x = -6
- Nếu 4 - 3x > 0 thì 4 - 3x = 2x - 10 => 14 = 5x => x = \(\frac{14}{5}\)
3) - Nếu x < 0 thì -x = 3 + 2x => -3x = 3 => x = -1
- Nếu x > 0 thì x = 3 + 2x => -x = 3 => x = -3
1.
\(\left|2x-1\right|=-19-x\)
\(2x-1=\pm\left(-19-x\right)\)
TH1:
\(2x-1=-19-x\)
\(2x+x=-19-1\)
\(3x=-20\)
\(x=-\frac{20}{3}\)
TH2:
\(2x-1=19+x\)
\(2x-x=19-1\)
\(x=18\)
Vậy x = -20/3 hoặc x = 18
2.
\(\left|4-3x\right|=2x-10\)
\(4-3x=\pm\left(2x-10\right)\)
TH1:
\(4-3x=2x-10\)
\(-3x-2x=-10-4\)
\(-5x=-14\)
\(x=\frac{14}{5}\)
TH2:
\(4-3x=-2x+10\)
\(-3x+2x=10-4\)
\(x=-6\)
Vậy x = 14/5 hoặc x = -6
3.
\(\left|x\right|=3+2x\)
\(x=\pm\left(3+2x\right)\)
TH1:
\(x=3+2x\)
\(x-2x=3\)
\(x=-3\)
TH2:
\(x=-3-2x\)
\(x+2x=-3\)
\(3x=-3\)
\(x=-1\)
\(\left|x-2\right|=1\)
\(\Rightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)