Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
| x - 2019 | = 2019 - x
\(\Rightarrow\) \(\orbr{\orbr{\begin{cases}x-2019=2019-x\\x-2019=-\left(2019-x\right)\end{cases}}}\)
\(\Rightarrow\) \(\orbr{\begin{cases}x+x=2019+2019\\x-2019=-2019+x\end{cases}}\)
\(\Rightarrow\) \(\orbr{\begin{cases}x=2019\\x=x\end{cases}}\)
=> x = 2019
\(|x-2019|=2019-x\)
\(\rightarrow\left|x-2019\right|=-\left(x-2019\right)\)
\(\rightarrow-\left(x-2019\right)\ge0\)\((\left|x-2019\right|\ge0)\)
\(\rightarrow x-2019\le0\)
\(\rightarrow x\le2019\)
\(ĐKXĐ:\hept{\begin{cases}x-1\ne0\\x+2019\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\Leftrightarrow-2019\end{cases}}\)
\(\frac{x+1}{x-1}=\frac{x-2019}{x+2019}\Leftrightarrow\frac{x+1}{x-1}-\frac{x-2019}{x+2019}=0\)
\(\Leftrightarrow\frac{x+1}{x-1}+\frac{2019-x}{x+2019}=0\Leftrightarrow\frac{\left(x+1\right)\left(x+2019\right)+\left(x-1\right)\left(2019-x\right)}{\left(x-1\right)\left(x+2019\right)}=0\)
\(\Leftrightarrow\frac{x^2+2020x+2019+2020x-x^2-2019}{\left(x-1\right)\left(x+2019\right)}=0\)
\(\Leftrightarrow\frac{4040x}{\left(x-1\right)\left(x+2019\right)}=0\Leftrightarrow4040x=0\Leftrightarrow x=0\)
Vậy \(x=0\)
a)\(2019-\left|x-2019\right|=x\)
\(\Rightarrow2019-x=\left|x-2019\right|\)
=>\(\left|x-2019\right|=-\left(x-2019\right)\)
=>\(x-2019\le0\)
=>\(x\le2019\)
b) Vì \(\left(2x-1\right)^{2018}\ge0\forall x\)
\(\left(y-\frac{2}{5}\right)^{2018}\ge0\forall y\)
\(\left|x+y-z\right|\ge0\forall x,y,z\)
=> \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|\ge0\forall x,y,z\)
mà \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}}\)=>\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}\)
a, Ta có:
\(\left|x-2019\right|=\orbr{\begin{cases}x-2019\ge0\Rightarrow x\ge2019\\-x+2019< 0\Rightarrow x< 2019\end{cases}}\)
Xét x<2019 thì |x-2019|=-x+2019
Khi đó: 2019-(-x+2019)=x
\(\Leftrightarrow\)-x+2019=2019-x
\(\Leftrightarrow\)-x+2019+x=2019
\(\Leftrightarrow\)0x+2019=2019
\(\Leftrightarrow\)0x=0 (thỏa mãn)
Xét 2019\(\le\)x thì |x-2019|=x-2019
Khi đó 2019-(x-2019)=x
\(\Leftrightarrow\)2019-x+2019=x
\(\Leftrightarrow\)4038-x=x
\(\Leftrightarrow\)4038=2x
\(\Leftrightarrow\)x=2019(thỏa mãn)
Vậy .......................................................!!!
=>|x-2017|+|2018-x|+|2019-x|=2(mỗi s/h < =2) TH1;|2019-x|=0=>2019-x=0
ta có; |x-2017|+|2018-x|+|2019-x| >= |x-2017+2018-x|+|2019-x| =>x=2019=>tích =3(L)
=> >= |1|+|2019-x|=1+|2019-x| TH2;|2019-x|=1=>hoặc2019-x=1;hoặc = -1 => 2 >= 1+|2019-x| =>hoặc x=2018;hoặc = 2020
=> 1 >= |2019-x| =>hoặc tích=2(TM);tích=6(L) Vậy x=2018
=>|2019-x|={1;0}
ta có |2017-x|+|2019-x|=|2017-x|+|x-2019|>=|2017-x+x-2019|=|-2|=2
=>|2017-x|+|x-2019|>=2
Dấu "=" xảy ra khi (2017-x)(x-2019)>=0
<=>\(\orbr{\begin{cases}\hept{\begin{cases}2017-x\le0\\x-2019\le0\end{cases}}\\\hept{\begin{cases}2017-x>0\\x-2019>0\end{cases}}\end{cases}}\)
\(\frac{x+1}{2019}+\frac{x+2}{2018}=\frac{x+3}{2017}+\frac{x+4}{2016}\)
\(\Leftrightarrow\left(\frac{x+1}{2019}-1\right)+\left(\frac{x+2}{2018}-1\right)=\left(\frac{x+3}{2017}-1\right)+\left(\frac{x+4}{2016}-1\right)\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}=\frac{x+2020}{2017}+\frac{x+2020}{2016}\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\right)=0\)
\(\Leftrightarrow x+2020=0:\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\right)\)
\(\Leftrightarrow x+2020=0\)
Còn lại tự làm :V
Lộn chỗ này , thay chút nha !
\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)=\left(\frac{x+3}{2017}+1\right)+\left(\frac{x+4}{2016}+1\right)\)
Sorry =))
\(\frac{x-1}{2019}+\frac{x-2}{2018}-\frac{x-3}{2017}=\frac{x-4}{2016}\)
\(\Leftrightarrow\frac{x-1}{2019}+\frac{x-2}{2018}-\frac{x-3}{2017}-\frac{x-4}{2016}=0\)
\(\Leftrightarrow\frac{x-1}{2019}-1+\frac{x-2}{2018}-1-\frac{x-3}{2017}+1-\frac{x-4}{2016}+1=0\)
\(\Leftrightarrow\frac{x-2020}{2019}+\frac{x-2020}{2018}-\frac{x-2020}{2017}-\frac{x-2020}{2016}=0\)
\(\Leftrightarrow\left(x-2020\right)\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\right)=0\)
\(\Leftrightarrow x-2020=0\Leftrightarrow x=2020\)
\(\frac{x-1}{2019}+\frac{x-2}{2018}-\frac{x-3}{2017}=\frac{x-4}{2016}\)
\(\frac{x-1}{2019}+\frac{x-2}{2018}=\frac{x-3}{2017}+\frac{x-4}{2016}\)
\(\frac{x-1}{2019}+\frac{x-2}{2018}-2=\frac{x-3}{2017}+\frac{x-4}{2016}-2\)
\(\left(\frac{x-1}{2019}-1\right)+\left(\frac{x-2}{2018}-1\right)=\left(\frac{x-3}{2017}-1\right)+\left(\frac{x-4}{2016}-1\right)\)
\(\frac{x-1-2019}{2019}+\frac{x-2-2018}{2018}=\frac{x-3-2017}{2017}+\frac{x-4-2016}{2016}\)
\(\frac{x-2020}{2019}+\frac{x-2020}{2018}=\frac{x-2020}{2017}+\frac{x-2020}{2016}\)
\(\frac{x-2020}{2019}+\frac{x-2020}{2018}-\frac{x-2020}{2017}-\frac{x-2020}{2016}=0\)
\(\left(x-2020\right)\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\right)=0\)
\(\Rightarrow x-2020=0\)
Vậy \(x=2020\)
\(x=2020\)
X=2018