\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y-\sqrt{2}\right)^2}\)+Ix...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(x-\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)

\(\Rightarrow\hept{\begin{cases}x-\sqrt{2}=0\\x+y+z=0\end{cases}\Rightarrow\hept{\begin{cases}x=\sqrt{2}\\x+y=-z\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=\sqrt{2}\\x=-z-y\end{cases}}\)

30 tháng 1 2016

Ta có: \(\sqrt{\left(x-\sqrt{2}\right)^2}\ge0;\sqrt{\left(y+\sqrt{2}\right)^2}\ge0;\left|x+y+z\right|\ge0\)

Mà theo đề: \(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)

=> \(\sqrt{\left(x-\sqrt{2}\right)^2}=\sqrt{\left(y+\sqrt{2}\right)^2}=\left|x+y+z\right|=0\)

=> \(x-\sqrt{2}=y+\sqrt{2}=x+y+z=0\)

=> \(x=\sqrt{2};y=-\sqrt{2};z=0\).

15 tháng 12 2016

\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|\)

Ta thấy: \(\begin{cases}\sqrt{\left(x-\sqrt{2}\right)^2}\ge0\\\sqrt{\left(y+\sqrt{2}\right)^2}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|\ge0\)

\(\Rightarrow\begin{cases}\sqrt{\left(x-\sqrt{2}\right)^2}=0\\\sqrt{\left(y+\sqrt{2}\right)^2}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}\left|x-\sqrt{2}\right|=0\\\left|y+\sqrt{2}\right|=0\\\left|x+y+z\right|=0\end{cases}\)

\(\Rightarrow\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\\\sqrt{2}+\left(-\sqrt{2}\right)+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{cases}\)

15 tháng 12 2016

Ôn tập toán 7

Bài này chỉ yêu cầu tìm x thôi đúng ko bạn .

\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y-\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)

\(\Rightarrow\hept{\begin{cases}x-\sqrt{2}=0\\y-\sqrt{2}=0\\x+y+z=0\end{cases}\Rightarrow x=\sqrt{2}}\)

21 tháng 10 2015

=>|x-2|+|y+2|+|x+y+z|=0

vì |x-2|>=0 với mọi x

|y+2|>=0 với mọi y

|x+y+z|>=0 với mọi x,y,z

nên |x-2|+|y+2|+|x+y+z|>=0 với mọi x,y,z

=>để |x-2|+|y+2|+|x+y+z|=0 thì

x-2=0 và y+2=0 và x+y+z=0

=>x=2 và y=-2 và z=0

(p/s: ko nhầm thì cái này hợp vs lớp 9 hơn @@)

3: |2x-1|=|x+1|

=>2x-1=x+1 hoặc 2x-1=-x-1

=>x=2 hoặc 3x=0

=>x=2 hoặc x=0

4: \(\Leftrightarrow\left\{{}\begin{matrix}x+\sqrt{5}=0\\y-\sqrt{3}=0\\x-y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\sqrt{5}\\y=\sqrt{3}\\z=x-y=-\sqrt{5}-\sqrt{3}\end{matrix}\right.\)